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“Every day I watched closely for the sun or stars to appear,
to correct my chronometer, on the accuracy of which our
lives and the success of the journey would depend.”

(F.A. Worsley, 1916 [53])
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Abstract

The robot localization problem is a key problem in making truly autonomous
robots. If a robot does not know where it is, it can be difficult to determine
what to do next. In order to localize itself, a robot has access to relative and
absolute measurements giving the robot feedback about its driving actions
and the situation of the environment around the robot. Given this informa-
tion, the robot has to determine its location as accurately as possible. What
makes this difficult is the existence of uncertainty in both the driving and
the sensing of the robot. The uncertain information needs to be combined
in an optimal way.

The Kalman Filter is a technique from estimation theory that combines
the information of different uncertain sources to obtain the values of vari-
ables of interest together with the uncertainty in these. The filter has been
successfully applied in many applications, like missions to Mars, and auto-
mated missile guidance systems. Although the concept of the filter is rel-
atively easy to comprehend, the advantages and shortcomings can only be
understood well with knowledge of the pure basics and with experience.

In this work we provide a thorough discussion of the robot localization
problem and Kalman Filter techniques. First, we look at current methods to
obtain location information, pointing out advantages and disadvantages. We
formalize how to combine this information in a probabilistic framework and
discuss several currently used methods that implement it. Second, we look at
the basic concepts involved in Kalman Filters and derive the equations of the
basic filter and commonly used extensions. We create understanding of the
workings, while discussing the differences between the extensions. Third, we
discuss and experimentally show how Kalman Filters can be applied to the
localization problem. We look at system and measurement models that are
needed by the filter; that is, we model a driving system, a GPS-like sensor,
and a landmark-based sensor. We perform simulations using these models in
our own general Kalman Filter simulator showing different behaviors when
applying the Kalman Filter to the localization problem. In order to use
the landmark-based sensor when it can not uniquely identify landmarks, we
extend the Kalman Filter to allow for multiple beliefs.

The material presented in this work forms a basis for further studies
in localization literature, application of Kalman Filters in any domain, and
in particular practical application of Kalman Filters and localization on
physical robots.





Preface

This Thesis

This thesis is the result of the project that I performed in partial fulfillment
for the degree of Master of Science, specialized in Intelligent Systems, to
be acquired at the University of Utrecht, the Netherlands. I conducted the
research involved in this project at the Datalogisk Institut, Københavns
Universitet, Denmark, 2002-2003.

In this thesis I look at two large research fields. First, the field of robotic
research, which is a relatively new field, dynamic and full of interesting chal-
lenges. The research in this field focuses at making robots more and more
useful in practical settings. The potential applicability of robotic systems
grows constantly, and with every new application, ideas for other applica-
tions arise. I investigate a key problem in making robots capable of doing
their own thing, the problem of Robot Localization. The second field which
I investigate in this thesis is the field of estimation theory. I explore how
we can deal with the Robot Localization problem using a certain estimation
technique, the technique of Kalman Filters.

Audience

The audience intended to read this thesis are graduate computer science
students with interests in robotics and state estimation. A major part of the
theory involved in this thesis builds on probabilities and matrix calculations
and therefore a basic understanding of statistics and linear algebra is an
advantage. In particular knowledge of the properties of Gaussian distributed
variables makes understanding this thesis easier. Introductionary texts on
these topics can be found in [32, 39, 22].
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Online

At the website of this project, an HTML, pdf, and postscipt version of this
thesis can be found. The first two of these include direct links to referenced
articles and an interactive table of contents. Besides this, the website also
contains the source codes of the used simulator, experimental settings, and
the final presentation of the project. The website of the project can be found
at

http://www.negenborn.net/kal loc/.

Feel free to contact me through e-mail with any comments regarding this
work at

rudy@negenborn.net.
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Chapter 1

Introduction

Imagine yourself walking down a street. The street is filled with obstacles,
like houses, trees, and other people. You want to go to the supermarket.
With your eyes closed.

You will most probably find it rather difficult to find your way to the
supermarket. Even if you know exactly which route to walk and even if
there are no other people blocking the route.

Fortunately, most of us have eyes that help us in finding our way. At
every movement we make, our eyes tell us where that movement brought us
in the world. They constantly correct the imperfections of our movements.

You do not realize how inaccurate the movements that you make are,
until you try to walk a straight line with eyes closed. Even though you think
that the steps you make are steps on a straight line, it will probably quickly
feel like you are moving away from the line. You will probably even start to
loose your balance trying to stay on the line.

Walking down a virtual line with your eyes open in general does not
cause many problems. From the information that you get from your eyes,
and other senses, you constantly obtain an idea of where you are in the
world. You use this idea to decide what to do next, for example to move
towards the line if you are moving away from it.

Robots that move freely in the world have the same problems as humans
when walking through the world. If they only move around not looking at
where their actions take them, they will get lost because of imperfections in
their moving mechanisms and the environment. Like humans, using eyes or
other sensors, robots can detect these imperfections and get a better idea of
where they are.
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1.1 Autonomous Mobile Robots

In 1920 Karel Capek introduced the word robot in the English language
in his play R.U.R., Rossum’s Universal Robots1[9]. In that play Capek
presents a future in which all workers are automated, and how this leads to
the ultimate revolt when the automated workers get souls.

Although much progress has been made in robot research since the days
of Capek, robots are still far away from having souls. However, from static,
non-autonomous robots in the beginning, robots now become more and more
mobile and autonomous.

1.1.1 Mobility

The mobility of robots is the degree to which robots are able to freely move
through the world. The first practical use of robots was in industrial settings
with so-called robot manipulators [12]. These robots have the task to man-
ufacture products like cars. They are programmed in such a way that they
can repeat the same sequence of actions over and over again, faster, cheaper,
and more accurate than humans. Typically they consist of a movable arm
fixed to a point on the ground, which can assemble or manufacture different
parts. Besides moving around this fixed point, the robots are not capable
of moving freely and therefore they are not very mobile.

If we want robots that can do everyday tasks like cleaning the floor or
delivering mail, they will have to be more mobile than the robot manipu-
lators. That is, they have to be able to move around freely in a world while
performing their tasks.

1.1.2 Autonomy

Autonomy of robots depends on to what extent a robot relies on prior know-
ledge or information from the environment to achieve its tasks. Robots can
be divided into three classes of autonomy: non-, semi- and fully-autonomous
robots [11].

• Non-autonomous robots are completely remotely steered by humans.
The intelligence involved in these robots consists of interpreting the
commands received from human controllers.

• Semi-autonomous robots can either navigate by themselves, or be
steered by humans. Krotkov and colleagues [26] do research in how
delayed commands from humans can be combined with autonomously
made decisions for controlling robots that have to navigate on the
Moon and on Mars. In dangerous situations the robot takes full con-
trol; in less dangerous situations humans can control the robot.

1Although his brother Josef invented it.
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Another form of semi-autonomy is achieved by adjusting the area or
by providing a map [16, 43] of the area in which the robot navigates.
Engineers are required to adjust the environment such that the robot
can safely move in that environment or to provide a map with which
the robot can find its way by itself.

• Fully-autonomous robot vehicles are steered solely by the robots them-
selves. The robots do not require human interaction to fulfill their
tasks. Fully autonomous robot vehicles are capable of intelligent mo-
tion and action, without requiring any external guidance to follow or
control them [12].

Whether or not autonomy is desired depends on the situation. For
robot manipulators in industrial settings it is not a problem being non-
autonomous. In fact, a producer of products probably does not want his
robots to do things on themselves, but rather sees them do exactly what he
wants them to do. Besides this, non-autonomous robots that can perform
the same sequence of actions over and over again are less expensive and
more reliable than manpower.

On the other hand, when using robots to perform tasks of which we do
not know each and every action to be taken, we do not want to specify each
action. We rather want a robot to achieve some general goal that we specify,
determining on itself how to get to this goal. A robot should therefore be
semi- or fully-autonomous.

1.1.3 Application Areas

Whereas robots in the early years of robot usage were mainly used in in-
dustrial settings, the usage of robots is nowadays more and more seen in
a wider perspective. A couple of examples should give an idea of the wide
applicability of autonomous robots.

Autonomous robots can be used to explore environments that are difficult
for humans to explore. Missions to planets and other places in space, or
investigations of dangerous sites like radioactive environments are examples
of these. The Lunar Rover Initiative [26] has the goal of making a trip
to the Moon with private sponsoring. The sponsoring parties strive for
public participation in space exploration. They want to let untrained people
experience places in space by letting them control robots that are located
at those places.

Another area in which autonomous robots can be used is underseas in
the form of autonomous underwater vehicles. These vehicles can explore the
sea surface while following reefs or pipes, and study marine creatures while
chasing fish to get large amounts of new scientific data [36]. Also on land
and in the air autonomous mobile robot applications can be found. Robots
may for example perform repairs and maintenance remotely.
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A fourth application area is in the entertainment sector. Robots can act
as museum guides to attract people and show them around, both physically
and through Internet [43].

Finally, a potentially interesting area where autonomous vehicles can be
used is the service sector. Intelligent wheel chairs and vacuum cleaners can
improve the life quality of many people. Medicin or food delivery robots can
relief the workload of care workers.

In each of the mentioned application areas the robot requires autonomy
and mobility. In order to achieve its tasks, it needs to move through some
environment. This moving around is known as robot navigation.

1.2 Robot Navigation

1.2.1 Three Questions

Robot navigation is the task of an autonomous robot to move safely from one
location to another. The general problem of navigation can be formulated
in three questions [27],

• Where am I? The robot has to know where it is in order to make
useful decisions. Finding out the whereabouts of the robot is called
robotic localization.

• Where am I going? In order to fulfill some task the robot has to know
where it is going. It has to identify a goal and this problem is therefore
known as goal recognition.

• How do I get there? Once the robot knows where it is and where it
has to go it has to decide on how to get there. Finding a way to get
to the goal is known as path planning.

1.2.2 Difficulties

The navigation task is difficult due to a number of complex problems. Some
issues that complicate navigation are limits on computational power, diffi-
culties in detecting and recognizing objects, difficulties in avoiding collisions
with objects, and the difficulties involved in using information provided by
the environment [37].

1.2.2.1 Computational Power

The computational power that is needed to do for example real time image
processing, computer vision, and learning is high. Although CPUs become
faster and faster, they are still not fast enough to provide the power to per-
form those tasks on the fly. The chip technologies used today for processor
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design will reach their limits. According to some, it will take years before
new processing technologies become available [37].

1.2.2.2 Object and Landmark Recognition

Robots need to recognize structures like objects and landmarks in order to
be able to perform their tasks. If these structures in an environment are not
known in advance, image processing may need a lot more computational
power than if the structures are known. Also, solutions that work in en-
vironments with known structures may not work if the structures are not
known. Whether or not structures are known in advance or not, recognition
of these can come with a significant amount of uncertainty.

1.2.2.3 Obstacle Avoidance

At all costs robots should avoid colliding with the obstacles in their environ-
ments. In dynamic environments, that is, where there are multiple moving
obstacles, obstacle avoidance is a difficult problem. Although the dynam-
ics of moving obstacles can sometimes be predicted, like when trains run
on a track, sometimes the dynamics may be more uncertain, like playing
children running around. A robot uses path planning techniques to plan a
collision free path from one location to another location. If the obstacles in
the environment are dynamic, the path planning problem is NP-hard [37].

1.2.2.4 Multi-Modal Sensor Fusion

The information that robots obtain using their sensors needs to be combined
to determine what is going on in the environment. Different sensors on
a robot can give different information about the environment. Different
sensors can also give inconsistent or incorrect sensor readings. Sensor fusion
is the problem of combining data from different sensors into one unified view
of the environment.

Methods developed so far mainly solve the uni-modal sensor fusion prob-
lem, where the different sensors give information about a specific part of the
state of the robot, like for example the location. There are no clear ex-
tensions yet to multi-modal sensor systems, where the different sensors give
different kinds of information that in combination give information about
the state of the robot, similar to the way humans reason with sensor inform-
ation [37].

1.3 Errors and Uncertainty

A general factor that complicates some of the difficulties mentioned in the
last section is the existence of noise and errors, in particular in the sensor
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readings. To function, a robot has to get an idea of the world surrounding
it. To be able to do this, it uses sensors like biological creatures. How-
ever, what the robot thinks it senses is not necessary what is actually the
case. Uncertainties in object recognition, dynamic environments, and sensor
readings make obtaining an accurate idea of the environment difficult. An
example can point this out.

While navigating, a robot often uses odometry sensors to estimate its
position [5]. These sensors count the number of revolutions that the wheels
make while driving and turning. The readings can be used to help estimating
the displacement over the floor to give an indication of the location of the
robot. However, due to wheel slippage or other small noise sources [6],
the odometer readings may give inaccurate results. Moreover, odometer
readings are only based on the number of wheel revolutions and there is no
way for the robot to see from these readings alone how accurate they are.
The error in where the robot thinks it is will increase. Therefore, simply
assuming that the odometer readings are correct can result in incorrect
position estimates. Thus, the robot needs to have some notion of the error
in the odometer readings. If it has some idea of the error, it can take this
into account when finding out its location.

To keep the unbounded growth of the location error within certain
bounds, the robot might use sensors that visually sense the environment.
If a human wants to be sure about his location, he might look around for
aspects of the environment that look familiar and that might confirm his
location idea. The autonomous robot can do the same. It can look around
in the environment using its sensors and try to use the information received
from those to make its location more sure. It can use vision, compasses,
active beacons, landmarks or perhaps GPS systems [5]. The information
from the environment can be used to correct the error that was introduced
by the odometry errors.

However, just like the odometry sensors, the sensors used to decrease
the error in the position are also subject to errors. Reflections of laser
beams, shadows in images, low level landmark detection algorithms, they
all can cause errors in what the robot thinks is the case in the environment.
Therefore, the robot also needs to have some notion of this uncertainty in
order to be able to make a good estimate of its location.

This example shows the need for taking errors into account when deal-
ing with robot navigation in the real world. Considering errors gives a more
realistic view of the situation in the world and therefore has the potential of
improved decision making and acting in that world. By looking at the local-
ization problem from a probabilistic point of view, the notions of uncertainty
and the beliefs of where a robot thinks it is can be modeled naturally.
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1.4 Kalman Filters

The measurements a robot makes need to be combined to form an estimate
of the location of the robot. The Kalman Filter (KF) is the best possible,
optimal, estimator for a large class of systems with uncertainty and a very
effective estimator for an even larger class [23, 21]. It is one of the most
well-known and often-used tools for so called stochastic state estimation
from noisy sensor measurements. Under certain assumptions, the KF is an
optimal, recursive data processing or filter algorithm [21].

• The KF is optimal, because it can be shown that, under certain as-
sumptions, the KF is optimal with respect to virtually any criterion
that makes sense [21], for example the mean squared error. One of the
reasons the filter performs optimally is because it uses all available
information that it gets. It does not matter how accurate or precise
the information is. It just uses all it gets to make an overall best es-
timate of a state, i.e., the values of the variables of interest. It does
this by incorporating knowledge about the system dynamics, statist-
ical descriptions of the system noises, measurement noise, uncertainty
in the dynamics model, and any available information about initial
conditions of the variables of interest.

• The KF is recursive, which brings the useful property that not all
data needs to be kept in storage and re-processed every time when for
example a new measurement arrives. Information gained in successive
steps is all incorporated into the latest result.

• The KF is a data processing algorithm or filter, which is useful for the
reason that only knowledge about system inputs and outputs is avail-
able for estimation purposes. Variables of interest can not be measured
directly, but have to somehow be generated using the available data. A
filter tries to obtain an optimal estimate of variables from data coming
from a noisy environment.

For robotic purposes, the KF may be used to combine the information
from sensors to estimate the state the robot is in, that is, the location the
robot is at. The KF takes into account the different uncertainties and error
sources that disturb the robot system and measurements.

1.5 Problem and Outline

In this thesis we want to make the reader familiar with the current research
issues in robot localization and with the theory and practical use of Kalman
Filters. The problem of robot localization is sometimes referred to as the
most fundamental problem in making truly autonomous robots [11]. The
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problem is difficult to solve, due to the existence of uncertainties in several
areas. Kalman Filters are a classical approach to estimating states of noisy
systems in noisy environments. In this thesis we investigate how we can use
Kalman Filters in the robot localization problem.

Outline

The first chapters of this work thoroughly deal with the robot localization
problem. In Chapter 2 we introduce the problem of robot localization and
describe different instances of the problem. We also look at different sensing
devices to give the reader concrete examples of where uncertainties play
a role in a robotic context. We describe a framework that we can use to
formalize the uncertainty and beliefs in the localization problem in Chapter
3. We approach the localization problem from a probabilistic point of view
and look at different solutions to the localization problem that implement
this framework.

Having covered the localization theory, we go into more detail on the
Kalman Filter in Chapter 4. The chapter gives a thorough introduction
of what the Kalman Filter is. We do this in a general way to give under-
standing of the Kalman Filter in its basic form to give readers interested in
Kalman Filters a good basis to start from when wanting to apply the filter
in any application domain. We describe the computational origins in great
detail, while also paying attention to the general ideas and intuition behind
the different equations. In Chapter 5 we describe some extensions to the
standard Kalman Filter that make it wider applicable. From the theory of
the Perturbation Kalman Filter we move on to the Extended Kalman Filter,
finishing with a discussion of the Iterated Extended Kalman Filter.

The chapters following the localization and Kalman Filter theory have
a more practical emphasis. In order to use the Kalman Filter as tool in
the localization problem, the robot’s system and measurements have to be
modeled. In Chapter 6 we derive the models that we need to perform local-
ization. From a practical point of view we show how to derive mathematical
models that describe sensing and acting devices. We discuss ways to apply
the Kalman Filter to the different localization problem instances in Chapter
7, where we also analyze the Kalman Filter using the derived models ex-
perimentally. We do this by means of a simulator in order to easily look at
different scenarios. In Chapter 8 we continue our analyzing of Kalman Fil-
ters when we look at problems that can occur with some of the extensions,
and when we extend the standard Kalman Filter framework to be wider
applicable in localization problems.

In Chapter 9 we summarize the presented work with concluding remarks.
Here, we also present ideas and possibilities for future research.



Chapter 2

Robot Localization

In this chapter we will take a look at robot localization. We will discuss the
general problem and different instances of it in Section 2.1. We will look
at the kind of information to which a robot has access for localization in
Section 2.2. In Sections 2.3 and 2.4 we will discuss different techniques that
provide a robot with that information. In Section 2.5 we look at how the
information can be used for solving the robot localization problem.

2.1 Localization Problem

The problem of robot localization consists of answering the question Where
am I? from a robot’s point of view. This means the robot has to find out its
location relative to the environment. When we talk about location, pose, or
position we mean the x and y coordinates and heading direction of a robot
in a global coordinate system.

The localization problem is an important problem. It is a key component
in many successful autonomous robot systems [45]. If a robot does not know
where it is relative to the environment, it is difficult to decide what to do.
The robot will most likely need to have at least some idea of where it is to
be able to operate and act successfully [5, 25]. By some authors the robot
localization problem has been stated as the “most fundamental problem to
providing robots truly autonomous capabilities” [11].

2.1.1 Problem Instances

The general localization problem has a number of increasingly difficult prob-
lem instances [45].

In the position tracking problem the robot knows its initial location. The
goal of the localization is to keep track of the position while the robot is
navigating through the environment. Techniques that solve this problem are
called tracking or local techniques [19].
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The wake-up robot or global positioning problem is more difficult than the
position tracking problem, since the robot does not know its initial position.
It has to localize itself from scratch. It hereby possibly needs to be able to
deal with multiple ideas about its location. Methods that solve this problem
are called global techniques [19].

An even harder problem to solve is the kidnapped robot problem. The
robot does exactly know where it is localized, but all of a sudden it is
transferred, or ‘kidnapped’, to another location without the robot being
aware of this. The problem for the robot is to detect that it has been
kidnapped and to find out what its new location is. Techniques that solve
this problem can also be used to solve the wake-up robot problem. The
wake-up robot problem is a special case of the kidnapped robot problem in
which the robot is told that it has been kidnapped [19].

A factor that complicates each of these problems is the dynamics of the
environment the robot is driving around in. Most localization research has
been focused on performing localization in static environments. This means
that the robot is the only moving object in the environment. Obviously
this is not the case in the real world. Dynamic environments contain other
moving objects and in these environments localization is significantly more
difficult, since these other objects might confuse the robot about its location
by corrupting the information used for localization.

2.2 Available Information

In determining its location, a robot has access to two kinds of information.
First, it has a-priori information gathered by the robot itself or supplied
by an external source in an initialization phase. Second, the robot gets
information about the environment through every observation and action it
makes during navigation.

2.2.1 A-priori Information

In general, the a-priori information supplied to the robot describes the
environment where the robot is driving around. It specifies certain features
that are time-invariant and thus can be used to determine a location. The
a-priori information can come in different flavors. Examples of these are
maps and cause-effect relationships.

2.2.1.1 Maps

The robot may have access to a map describing the environment. Such
a map can be geometric or topological [37]. Geometric maps describe the
environment in metric terms, much like normal road maps. Topological
maps describe the environment in terms of characteristic features at specific
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locations and ways to get from one location to another. A map can be
learned by the robot in advance in an exploration phase, or it can be given
by an external source in an initialization phase. A third option is that the
robot learns the map of the environment while it is navigating through it,
which is known as SLAM, Simultaneous Localization and Mapping [42].

2.2.1.2 Cause-effect relationships

Another way of supplying a-priori information to the robot is in terms of
cause-effect relationships [37]. Given the input from the observations, these
relationships tell the robot where it is. Possibly the robot can adjust these
cause-effect relationships while navigating through the environment.

2.2.2 Navigational Information

The second type of information to which a robot has access is navigational
information, i.e., information that the robot gathers from its sensors while
navigating through the environment. A robot typically performs two al-
ternating types of actions when navigating; it drives around or acts in the
environment on one hand, and it senses the environment on the other. These
two types of actions give rise to two different kinds of position information.

2.2.2.1 Driving

To be able to move around in an environment a robotic vehicle has a guidance
or driving system [12]. A guidance system can consist of wheels, tracks
or legs, in principle anything that makes the vehicle move around. These
components are called actuators.

Obviously, the guidance system plays an important role in the physical
position of a robot. The guidance system directly changes the location of
the vehicle. Without a guidance system the robot is not driving around,
which makes localizing itself a lot easier.

Assuming that a robot does have a guidance system, the way the guid-
ance system changes the location contains valuable information in estimating
the location. Knowing the effects of actions executed by the driving system
gives a direct indication of the location of the vehicle after execution of these
actions.

By monitoring what the driving system actually does using sensors, the
displacement of the robot vehicle can be estimated. This results in relat-
ive position measurements, or also sometimes referred to as proprioceptive
measurements [33]. Relative position measurements are measurements that
are made by looking at the robot itself only. No external information is used
and these measurements can therefore only supply information relative to
the point where the measurements were started.
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In Section 2.3 we take a closer look at different techniques that acquire
relative position information and what the advantages and disadvantages of
these techniques are.

2.2.2.2 Sensing

The robot senses the environment by means of its sensors. These sensors
give momentary situation information, called observations or measurements.
This information describes things about the environment of the robot at a
certain moment.

Observations made from the environment provide information about the
location of the robot that is independent of any previous location estim-
ates. They provide absolute position measurements, also sometimes called
exteroceptive measurements [33] to emphasize that the information of these
measurements comes from looking at the environment instead of at the robot
itself.

In Section 2.4, we discuss different kinds of techniques used in todays
mobile robots to acquire absolute position measurements.

2.3 Relative Position Measurements

Acquiring relative measurements is also referred to as dead reckoning, which
has been used for a long time, ever since people started traveling around
[53, 1]. Originally, this is the process of estimating the position of an airplane
or a ship, only based on the speed and direction of travel and the time that
passed since the last known position [1]. Since the position estimates are
based on earlier positions, the error in the estimates increases over time.

In robotic applications, relative position measurements are either ac-
quired by odometry or inertial navigation.

2.3.1 Odometry

The word odometry comes from the Greek words for road and measure [30]
and is the name of the most used technique for making a robot find out
its position. Odometry works by integrating incremental information over
time. By using wheel encoders to count the number of revolutions of each
wheel, the robot measures the distance it traveled and its heading direc-
tion. Odometry is widely used, because it gives good short-term accuracy,
is inexpensive, and allows for very high sampling rates [6, 4].

However, due to drift and slippage the integration of the wheel revolu-
tions leads to errors in both traveled distance and orientation [4]. These
errors accumulate over time. In particular errors in the orientation cause
large positioning errors. Another disadvantage of odometry is its sensitivity
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to terrain. If the surface the robot is driving on is not smooth, it can res-
ult in considerable position errors, since the odometry system cannot detect
the irregularities in the terrain. Also differences in wheel diameter can cause
position errors that are not detected by odometry measurements [35].

Although odometry causes increasing error in the location estimate, it is
the most easy to access form of position information and therefore it is an
important source of information for localization.

2.3.2 Inertial Navigation

Inertial navigation techniques use gyroscopes and accelerometers to meas-
ure the rate of rotation and acceleration of the robot [6]. Gyroscopes, or
rate gyros, or simply gyros, detect small accelerations in orientation. Until
recently, gyros were expensive with prices in the order of tens to hundreds
of thousands dollar. With the introduction of fiber-optic and laser gyros,
the prices have dropped considerably, allowing the use of gyroscopes on a
larger scale in robotic applications [6].

Accelerometers measure small accelerations along the x or y axis of a
robot vehicle. They suffer from extensive drift and are sensitive to bumpy
ground, since if there is a bump in the floor, the sensor will detect a compon-
ent of the gravitational acceleration. This problem can partially be solved
by including a tilt sensor that can cancel the gravity component. However,
the drift will still be high [4].

Like with odometry, position estimates from inertial navigation are ac-
quired by integrating the obtained information from the sensors; once for
obtaining the speed, twice for obtaining the traveled distance of the robot.
The systems are independent of external information sources. However,
since measurements are made by integration, the position estimates drift
over time, and thus the errors increase without bound.

2.4 Absolute Position Measurements

Absolute position measurements supply information about the location of
the robot independent of previous location estimates; the location is not
derived from integrating a sequence of measurements, but directly from one
measurement. This has the advantage that the error in the position does not
grow unbounded, as is the case with relative position techniques. Absolute
measurements can either supply the full location, or just a part of it, like
for example the orientation.

The methods to obtain absolute measurements can be divided into meth-
ods based on the use of landmarks or beacons and methods based on the use
of maps.
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2.4.1 Landmark Based

One group of methods relies on the detection of landmarks. Landmarks are
features in the environment that a robot can detect. Sensor readings from a
robot are analyzed for the existence of landmarks in it. Once landmarks are
detected, they are matched with a-priori known information of the envir-
onment to determine the position of the robot. Landmarks can be divided
into active and passive landmarks.

2.4.1.1 Active Landmarks

Active landmarks, also called beacons, are landmarks that actively send out
location information. Active landmarks can take on the form of satellites or
other radio transmitting objects. A robot senses the signals sent out by the
landmark to determine its position.

Two closely related methods are commonly used to determine the ab-
solute position of the robot using active landmarks: triangulation and tri-
lateration [37]. Triangulation techniques use distances and angles to three
or more active landmarks; trilateration techniques only use distances. The
angles and/or distances are then used to calculate the position and orient-
ation of the robot.

The GPS, or Global Positioning System [14], uses trilateration techniques
to determine latitude, longitude and elevation. It uses time of flight inform-
ation from uniquely coded radio signals sent from satellites. Twenty-four
satellites orbit the earth in 12 hours in six different orbital planes. Ground
stations track the satellites and send them information about their position.
On their turn, the satellites broadcast information back to the earth. The
result gives a position accuracy between 100 and 150 meters [14].

To be able to use the mentioned methods, the robot needs to know the
location of the landmarks in advance. Besides this, no a-priori information
is required.

There are some problems with these techniques though. The transmit-
ting of the active signals can be disturbed by atmospheric and geographic
influences while going from sender to receiver [37]. These disturbances can
be refractions and reflections, and will result in incorrect measurements.
Another problem is that active landmarks in practice often cannot send
out their signals in all directions, and thus cannot be seen from all places.
Furthermore, active landmarks may be expensive to construct and maintain.

2.4.1.2 Passive Landmarks

If the landmarks do not actively transmit signals, the landmarks are called
passive landmarks. The robot has to actively look for these landmarks to
acquire position measurements.
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Techniques using passive landmarks in determining the position of the
robot rely on detection of those landmarks from sensor readings. The de-
tection of landmarks depends on the type of sensor used. For example, in
detecting landmarks in images from a vision system, image processing tech-
niques are used. When three or more landmarks are detected by the robot, it
can use the triangulation or trilateration techniques to compute its location.

Passive landmarks can be either artificial or natural and the choice of
which kind of landmarks to use can play a significant role in the performance
of the localization system.

Artificial Landmarks. Artificial landmarks are landmarks designed to
be recognized by robots. They are placed at locations in the environment
that are known in advance and that are well visible to the robot’s sensors.
Since these landmarks are specifically designed and placed in the environ-
ment for robot localization purpose only, a robot should not have problems
determining its position unambiguously. Examples of passive artificial land-
marks are bar codes, and colored geometric figures, like squares and circles.

Using artificial landmarks has a number of disadvantages. One of them
is that the further away a robot is from a landmark, the less accurate the
position estimation becomes [37]. This can for example be seen when detect-
ing landmarks using vision systems. The further away a landmark is from a
robot, the smaller the landmark will be in the images of the vision system
and the more difficult it becomes to base an accurate position measurement
on this landmark. If the distance is smaller, the position measurements will
be more accurate.

Besides having less accurate measurements when landmarks are further
away, measurements can be inaccurate, incorrect or even absent because of
for example different lighting conditions or partial visibility [37]. Also, com-
pared to active landmarks, detecting artificial landmarks takes a lot more
processing power and the landmarks and environment have to be engineered
to make the recognition work.

However, artificial landmarks can well be used when the environment
is structured and does not change too much, like in office and factory en-
vironments. Outdoors however, the disadvantages might be too large to
successfully use artificial landmarks. In that case, using natural landmarks
seems more useful.

Natural Landmarks. Natural landmarks are landmarks that are not spe-
cifically engineered to be used as localization means for robots. Natural
landmarks are already part of the environment of the robot. In indoor en-
vironments, examples of passive natural landmarks are doors, windows, and
ceiling lights, whereas in outdoor environments roads, trees, and traffic signs
are candidates.
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Natural landmarks have the same disadvantages as artificial landmarks,
except that the environment does not have to be engineered. Compared to
artificial landmarks, the computational complexity of recognizing the nat-
ural landmarks is higher and the reliability of the recognition lower [37].
Especially when the landmarks are outdoors this can be a problem, since out-
door landmarks are often not as geometrically (lines, squares, etc.) shaped
as indoor landmarks, which complicates the recognition.

Since the landmarks are not specifically engineered for localization pur-
poses, the robot might need a number of observations before it can uniquely
determine its position. For example, several doors in a row may look all
the same and the robot needs a number of observations to find out in front
of which door it is standing. This problem can be overcome by including
more and more natural landmarks that uniquely determine a location, but
this again will increase the computational complexity. A balance between
the computational complexity and amount of natural landmarks that has to
be used can be learned with neural networks. Learning landmarks increases
the flexibility, optimality, and autonomy of the robot [40].

2.4.2 Map Based

Another group of localization techniques are map based positioning or model
matching techniques. These approaches use geometric features of the envir-
onment to compute the location of the robot. Examples of geometric features
are the lines that describe walls in hallways or offices. Sensor output, from
for example sonars, is then matched with these features. Model matching
can be used to update a global map in a dynamic environment, or to create
a global map from different local maps [37].

The representation of maps can differ. It can either be geometric or
topological. Geometric maps contain the environment in a global coordinate
system. Topological maps contain the environment in the form of a network
where nodes represent places in the environment and arcs between the nodes
represent actions relating one location to another.

Using model matching techniques to determine the absolute position of a
robot has the disadvantage that there needs to be enough sensor information
to be matched with the map to come up with a position. Furthermore,
techniques for matching sensor data with maps often require large amounts
of processing power and sensing [37].

2.5 Multi-Sensor Fusion

Algorithms that solve the localization problem combine initial information
and relative and absolute position measurements to form estimates of the
location of the robot at a certain time. If the measurements are considered
to be readings from different sensors, the problem becomes how to combine
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the readings from different sensors to form a combined representation of the
environment. This problem is studied by research in multi-sensor fusion
[37, 28].

Fusion of information from multiple sensors is important, since combined
information from multiple sensors can be more accurate. In particular when
not all sensors are able to sense the same. Some features may be occluded
for some sensors, while visible to others. Together the sensors can provide
a more complete picture of a scene at a certain time. Multi-sensor fusion is
also important since it can reduce the effects of errors in measurements.

Multi-sensor fusion methods can rely on a probabilistic approach, where
notions of uncertainty and confidence are common terminology. In the fol-
lowing chapter we will describe a probabilistic framework for multi-sensor
fusion in the robot localization problem. This framework is a general frame-
work describing the probabilistic foundations of many existing, currently
used, methods for solving the localization problem.

2.6 Summary

The robot localization problem is the problem of answering the question
Where am I? from a robot’s point of view. The general localization problem
has increasingly difficult problem instances. In position tracking the robot
knows its initial position, whereas in global positioning it does not. In the
kidnapped robot problem, the robot knows where it is, but all of a sudden
it is transported to a new location.

To perform localization, a robot has access to a-priori and navigational
information. The a-priori information comes in the form of maps and cause-
effect relationships that describe characteristics of the environment. Navig-
ational information is the information the robot acquires while it is navig-
ating in the environment. This information consists of relative and absolute
measurements. The relative information provides high frequency, low cost,
detailed information about the relative displacement of the robot, independ-
ent of features in the environment. However, due to slippage and drift of
the robot, localization based only on relative information has an error that
increases without bounds over time. The absolute information provides pos-
ition measurements based on observations made from the environment. This
position information is independent of previous position estimates. However,
this comes at the price of higher computational costs, lower frequency and
lower accuracy. Since the absolute measurements do not depend on previous
position estimates, they do not suffer from unbounded error growth.

Using absolute position measurements alone can be done, but the disad-
vantages suggest that a combination of relative and absolute position meas-
urements is better. The relative position measurements provide precise posi-
tioning information constantly, and at certain times absolute measurements
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are made to correct the error in the relative measurements. Multi-sensor
fusion provides techniques to combine information from different sensors in
providing a best estimate of the robot’s position.



Chapter 3

A Probabilistic Framework

In Chapter 2 we discussed different techniques to make relative and absolute
position measurements. We discussed different sources of errors and found
that there is not one best localization technique. We came to the conclusion
that combining relative and absolute measurements is necessary.

In this chapter we focus on how the position measurements can be com-
bined in a formal probabilistic framework. In Section 3.1 we describe the
probabilistic view-point on robot localization, introduce the notion of be-
lief, and formalize the acting and sensing of a robot in probabilistic models.
We use these models in Section 3.2 to derive a general probabilistic formula
for localization. We discuss problems that arise when implementing this
formula in Section 3.3 and look at how several implementations deal with
these problems in Section 3.4.

3.1 Probabilistic Localization

The general localization problem can be described as a Bayesian estimation
problem [7]. We want to estimate the location of a robot given noisy meas-
urements. If we look at the problem probabilistically, we can say that the
robot has a belief about where it is. At any time, it does not consider one
possible location, but the whole space of locations. Based on all available
information, the robot can believe to be at a certain location to a certain de-
gree. The localization problem consists of estimating the probability density
over the space of all locations.

A Bayesian framework that estimates this density is the Markov Loc-
alization framework originally derived by Thrun and colleagues [19]. This
framework captures the probabilistic foundations of many currently used loc-
alization methods. The Markov Localization framework combines informa-
tion from multiple sensors in the form of relative and absolute measurements
to form a combined belief in the location.



20 A Probabilistic Framework

3.1.1 Beliefs

Belief. The robot has a belief about where it is. This is the probability
density over all locations x ∈ Ξ, where Ξ is the set of all locations. We
denote the belief by Bel. Localization can be seen as maintaining the belief,

Bel(xk) = P (xk|d0...k). (3.1)

That is, the probability that the robot is at location xk at time k, given all
information or data d0...k up to that time. This information also includes
the a-priori information like for example a map of the environment. The
location that given this probability distribution has the highest probability
is the location at which the robot is most likely to be.

The goal of localization is to make this belief get as close as possible to
the real distribution of the robot location. The real distribution of the robot
location has a single peak at the true location and is zero everywhere else.
If the robot achieves this goal, then it knows exactly where it is located.

Prior versus Posterior. During navigation, the robot has access to relat-
ive and absolute measurements. The robot incorporates these measurements
into its belief to form a new belief about where it is. Commonly, a distinc-
tion is made between prior and posterior belief. The prior belief Bel−(xk)
is the belief the robot has after incorporating all information up to step k,
including the latest relative measurement, but prior to incorporating the
absolute measurement at step k. The posterior belief Bel+(xk) is the belief
the robot has after it has also included the latest absolute measurement in
its belief.

States. In the following we will describe how we can compute the beliefs
about the location of a robot. Although we will discuss this from a local-
ization point of view, many of the ideas and assumptions are applicable to
the more general problem of estimating a state of any kind. In fact, the
framework that we will discuss is a specialization of the general Bayesian
state estimation framework that can be used to estimate any state that can
be observed by measurements.

3.1.2 Probabilistic Acting and Sensing

To be able to update the beliefs with the latest measurement information,
we need to express measurement information in probabilistic terms. We
need to define a probabilistic model for the acting, that is, the relative
measurements, and a probabilistic model for the sensing, that is, the absolute
measurements. We will use these two models in the next section to derive
a probabilistic model for robot localization that computes the belief in the
location after incorporating both types of information.
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3.1.2.1 Acting

A robot performs actions in the environment that change the position of
the robot. If we let action ak from a set of possible actions A be the action
performed by the robot at time k, we can express the way the location of
the robot changes probabilistically by a transition density as [40, 19]

P (xk|xk−1, ak−1). (3.2)

This probability density gives the probability that if at time step k − 1 the
robot was at location xk−1 and performed action ak−1, then it ended up at
location xk at time step k. In other words, the transition density describes
how the actions of the robot change its location. This density is therefore
called the action or motion model. Often the action model is time-invariant.
We can then omit the time subscript k.

Notice how actions contain relative information about the new location of
a robot. Given the last location, the robot can estimate its current location
based on the performed action. Without the last location, the robot only
knows it made a certain move; it is not able to label an absolute location to
the resulting position.

In practice we can roughly approximate this transition density from the
kinematics and dynamics of the robot. Another option is to have the robot
learn the model itself [40].

3.1.2.2 Sensing

We can also describe the sensing of the robot in probabilistic terms. Let S
be the space of all possible measurements coming from a sensor, and let sk
denote an element in S observed at time k. We can describe the probability
that a sensor observes sk from a certain location xk at time k by the density
[40, 19]

P (sk|xk). (3.3)

This is called the sensor or perceptual model. As with the motion model,
the perceptual model is often time-invariant. In that case we can omit the
time subscript k.

Unlike the transition density of the acting of the robot, this probability
density is difficult to compute. The reason for this is the sometimes high
dimensionality of the measurements. Consider for example how complex
the probability density is if the measurements come from a camera. The
probability density will have to give a probability for each possible camera
picture at each possible location, which would require a large amount of
computing power.
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Feature Vectors. To reduce the dimensionality, it is common to project
raw sensor data s to a lower-dimensional feature vector z using a feature
extractor, σ : S → Z [40]. The probability density from (3.3) is then
taken over the space of feature vectors Z instead of raw sensor data S. For
example, in landmark-based localization approaches a feature vector can
contain the presence or absence of landmarks, based on the information
from an image.

The obtained density does not relate pure sensor measurements to dif-
ferent locations in the environment, but it relates the feature vectors to
different locations in the environment. This density can either be given or it
can be learned from measurement examples. Most approaches assume that
it is given [5]1.

3.2 Localization Formula

Suppose a robot wants to localize itself. The robot starts with an initial be-
lief. At every time step, the robot performs an action that ends at the next
time step. This action changes the location of the robot according to the
transition density from (3.2). Besides this, the robot can also get informa-
tion from sensing the environment. It perhaps extracts features from this
sensor information to form a feature vector zk = σ(sk), which is distributed
according to the probability distribution from (3.3).

The robot now has to update its belief with the new information in order
to get the best location estimate. We will in Section 3.2.1 describe how we
represent the initial belief probabilistically, and then in Section 3.2.2 how
we incorporate navigation information in the belief.

3.2.1 Initial Belief

Before the robot starts acting in the environment it has an initial belief of
where it is. We model this belief by the prior belief at time step 0, Bel−(x0).

If the robot knows where it initially is, then Bel−(x0) is a distribution
with a peak at the location where the robot knows it is. The goal of the
localization becomes to compensate for slippage, drift and possible other
noise sources to keep track of the location. In Section 2.1.1 we named this
problem the position tracking problem.

In the case that the robot does not know where it starts, the initial
belief Bel−(x0) is a uniform distribution. The problem of localization is to

1In order to use a feature vector instead of a raw sensor reading to form the sensor
model, the feature extractor has to be a sufficient statistic for estimating the location.
This means that the probability density using the feature vectors should be the same as
when using raw data. Otherwise, the result can be sub-optimal, because important sensor
information is ignored. In practice sub-optimality of the density is tolerated, because of
the computational advantages of feature vectors [40].
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make the robot localize itself, not having any idea of where it is. In Section
2.1.1 we described this problem as the wake-up robot or global localization
problem.

Finally, in the case that the robot thinks it is at a certain location, but
it actually is not there, the initial belief is initialized with a peak at the
location where the robot thinks it is. Since it is not actually located there,
the robot has to detect this and adjust its belief. In Section 2.1.1 we called
this the kidnapped robot problem.

3.2.2 Updating the Beliefs

Starting with the initial belief the robot starts querying its sensors and
performing actions in the environment. The resulting measurements and
actions have to be incorporated into the belief of the robot to give it the
most up-to-date location estimate.

The belief the robot has after it has incorporated the action ak−1 ex-
ecuted at step k − 1, and before it gets a new measurement zk, is the prior
belief,

Bel−(xk) = P (xk|z1, a1, z2, a2, . . . , zk−1, ak−1). (3.4)

Once it has received an absolute measurement zk at step k, it incorporates
this measurement to obtain the posterior belief,

Bel+(xk) = P (xk|z1, a1, z2, a2, . . . , zk−1, ak−1, zk). (3.5)

The question now is how to compute these probability densities in an efficient
way.

3.2.2.1 Incorporating Acting

Assume the robot has performed an action and wants to include the relative
position measurement monitoring the result of this action into its belief. In
equation (3.4) we defined the belief in which the latest action information
is incorporated, the prior belief Bel−(xk). By means of the theorem of total
probability and the use of the Markov assumption, we can rewrite the original
definition into a computationally efficient formula.

Total Probability. The theorem of total probability states that the prob-
ability of an outcome is equal to the sum of the probabilities of each of its
dependent, partial, outcomes [49]. Using this theorem, we rewrite the defin-
ition of the prior belief (3.4) to

Bel−(xk) =
∫

Ξ
P (xk|xk−1, z1, a1, . . . , zk−1, ak−1)

× P (xk−1|z1, a1, . . . , zk−1, ak−1)dxk−1. (3.6)
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This equation expresses that the prior belief of being in state xk is the sum
of the probabilities of coming from state xk−1 to state xk given all the earlier
actions and measurements, P (xk|xk−1, z1, a1, . . . , zk−1, ak−1), multiplied by
the probability of actually being in state xk−1 given all the earlier measure-
ments and actions, P (xk−1|z1, a1, . . . , zk−1, ak−1).

The second term of the integral in (3.6) is the probability of being at
location xk−1 given all information up to step k− 1; in particular the action
performed at step k − 1. However, the physical location of the robot at
step k − 1 does not depend on the action that is performed at that step.
Therefore, we do not have to take ak−1 into account when expressing this
probability. Using this and the definition of the posterior belief from (3.5),
we rewrite (3.6) into

Bel−(xk) =
∫

Ξ
P (xk|xk−1, z1, a1, . . . , zk−1, ak−1)

× P (xk−1|z1, a1, . . . , zk−2, ak−2, zk−1)dxk−1

=
∫

Ξ
P (xk|xk−1, z1, a1, . . . , zk−1, ak−1)

×Bel+(xk−1)dxk−1. (3.7)

Markov Assumption. To simplify the expression of the first term of
the integral in (3.7) we make a Markov assumption [7], which states that
given knowledge of the current state, the past is independent of the future,
and vice-versa. With knowledge of the previous location xk−1, it is of no
importance how the robot ended up at that location or what it sensed. With
this, we have that

P (xk|xk−1, z1, . . . , zk−1, ak−1) = P (xk|xk−1, ak−1). (3.8)

Notice that the right hand side of this equation is the conditional prob-
ability of being in state xk given knowledge of the previous state and the
performed action. We defined this as the action model in (3.2). By sub-
stituting the result into (3.7) we obtain an equation that can be used to
efficiently incorporate the robot’s actions into its belief,

Bel−(xk) =
∫

Ξ
P (xk|xk−1, ak−1)Bel+(xk−1)dxk−1. (3.9)

That is, the prior belief of the robot in being at location xk, after having
finished the action of the previous time step k−1, is the result of integrating,
over all last locations xk−1, the probability that the performed action ak−1

brought the robot from location xk−1 to xk times the posterior belief that
the robot had in being at xk−1 at the last time step.
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3.2.2.2 Incorporating Sensing

Assume that the robot has the prior belief Bel−(xk), the belief in the loca-
tion after it has performed its last action. The robot makes a measurement
of the environment and extracts a feature vector zk from this measurement.
We want to incorporate this measurement into the prior belief to form the
posterior belief as we defined in equation (3.5). With Bayes’ rule and the
Markov assumption we can rewrite this posterior belief into a computation-
ally efficient form.

Bayes’ Rule. Bayes’ rule [31, 49] explains how the robot has to change
its belief when a new measurements arrives. Using Bayes’ rule and the
definition of the prior belief from (3.4), we can rewrite (3.5),

Bel+(xk) =
P (zk|xk, z1, a1, . . . , zk−1, ak−1)P (xk|z1, a1, . . . , zk−1, ak−1)

P (zk|z1, a1, . . . , zk−1, ak−1)

=
P (zk|xk, z1, a1, . . . , zk−1, ak−1)Bel−(xk)

P (zk|z1, a1, . . . , zk−1, ak−1)
(3.10)

That is, the posterior belief is the conditional probability of observing zk,
P (zk|xk, z1, . . . , ak−1), times the prior belief of being in state xk, Bel−(xk),
divided by the probability of observing measurement zk conditioned on all
information so far, P (zk|z1, . . . , ak−1).

Markov Assumption. To make the computations of equation (3.10) less
complex, we again make the Markov assumption. In this case we use it to
state that a sensor reading only depends on the current state. The sensor
reading is not influenced by previous locations of the robot. It does not mat-
ter how the robot got at the current location. The probability of observing
a measurement is independent of the actions and observations that were
made before the robot arrived in its current state. We use this assumption
to rewrite the first term in the nominator of (3.10),

P (zk|xk, z1, a1, . . . , zk−1, ak−1) = P (zk|xk). (3.11)

We see that when we make the Markov assumption, the conditional probab-
ility of observing measurement zk given the current state and past actions
and observations reduces to the sensor model from (3.3). If we substitute
this into (3.10), we obtain

Bel+(xk) =
P (zk|xk)Bel−(xk)

P (zk|z1, a1, . . . , zk−1, ak−1)
. (3.12)

The denominator of this equation is a normalizing constant ensuring that the
probability density integrates to 1. This constant is calculated by integrating
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the numerator over all possible locations xk [31, 40],

P (zk|z1, a1, . . . , zk−1, ak−1) =
∫

Ξ
P (zk|xk)Bel−(xk)dxk. (3.13)

Equation (3.12) shows how we can express the posterior belief in terms of the
prior belief. It also shows how we update the posterior belief to incorporate
a new absolute measurement. It is a computationally efficient equation due
to the use of the sensor model and the prior belief.

Localization Formula. We can combine the derived results into a single
localization equation for the posterior belief in the location of a robot taking
into account sensing and action information. Substituting equation (3.9)
into equation (3.12), the posterior belief becomes

Bel+(xk) =
P (zk|xk)Bel−(xk)
P (zk|z1, . . . , ak−1)

=
P (zk|xk)

∫
Ξ P (xk|xk−1, ak−1)Bel+(xk−1)dxk−1

P (zk|z1, . . . , ak−1)

= ηkP (zk|xk)
∫

Ξ
P (xk|xk−1, ak−1)Bel+(xk−1)dxk−1, (3.14)

where ηk is the probability density normalizer P (zk|z1, . . . , ak−1)−1, calcu-
lated as in equation (3.13).

3.2.3 Parameters

To be able to use equation (3.14), we need to specify three probability dis-
tributions.

1. The action model, P (xk|xk−1, ak−1), at which we looked in Section
3.1.2.1. It represents the mapping from locations and actions to new
locations. It represents the probability of ending up at location xk,
given previous location xk−1 and given the action ak−1 taken from
that location.

2. The perceptual model, P (zk|xk), at which we looked in Section 3.1.2.2.
It represents the probability that a certain observation or feature vec-
tor zk is observed from location xk. It maps locations to observations
or feature vectors.

3. The belief the robot has at step zero, Bel−(x0), also called the initial
belief of the robot. We looked at the initial belief in Section 3.2.1.

With this, we have derived and described a probabilistic formula that re-
cursively incorporates absolute and relative measurements into the belief of
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a robot. The formula represents the probabilistic foundation of many cur-
rently used probabilistic localization methods. In Section 3.3 we will discuss
the main issues in designing methods that use the derived formula (3.14).
In Section 3.4 we will discuss how different methods deal with these issues.

3.3 Complexity Issues

In the design of methods that implement the localization formula (3.14), the
complexity of the location space representation and the complexity of the
action and sensor models are important issues [44].

3.3.1 Representational Complexity

Representational complexity is the complexity of the representation of the
location space. Even with a small number of variables describing a location,
the size of the whole location space can be extremely large. The size of the
location space depends on the number of variables describing a location and
the number of possible values that these variables can take on. Often the
total number of possible locations is much larger than memory and hard-
ware constraints permit; the belief needs to represent a probability for every
possible value of every location variable. In fact, if the location contains
continuous variables, then the size of the whole location space is infinite.

One way to deal with this issue is by making conditional independence
assumptions [7]. These are assumptions about independence or conditional
independence of aspects of a location. The Markov assumption that we saw
in the previous section is one example of such an assumption. By making
the Markov assumption future and past observations become conditionally
independent if the current location is known. The Markov assumption im-
plies that the location of the robot is the only thing that changes in the
environment. Although this is not true in many environments, the Markov
assumption has practically proven to be useful [41].

Probabilistic localization methods deal with representational complexity
in different ways. They try to reduce the complexity of the location space
on one hand, while keeping the strength of the probabilistic framework on
the other [19]. We will see some examples of how methods deal with the
representational complexity issue when we discuss a number of localization
implementations in Section 3.4.

3.3.2 Modeling Complexity

Modeling complexity is the complexity of the action and sensor models. It
can be a difficult task to make models that adequately describe real actuator
and sensor systems. Especially when measurements are high-dimensional,
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for instance when camera images are used, the complexity of the models can
become very high.

One way to deal with high modeling complexity is to let the robot learn
the action and sensor models. It can learn the consequences of its actions
and it can learn a mapping from high-dimensional sensor data into a lower
dimensional space. Neural networks, for example, can be used to learn how
to extract landmarks from raw images [44].

In Section 3.4 we will see some examples of how existing implementations
deal with the modeling complexity issue.

3.4 Implementations

Depending on the way the belief is represented, we can divide the meth-
ods that implement the derived framework into two groups: methods that
represent the belief discretely and methods that represent the belief con-
tinuously [3]. These two groups of methods compute the beliefs differently.

3.4.1 Discrete Belief

A way of dealing with continuous location spaces is by discretization or
factorization of the space [19]. When the location space is discretized, the
integrals in equation (3.14) become sums and the belief over this space can
be computed and stored explicitly. This way of representing the belief is
captured by Hidden Markov Models [3]. These are general models in terms
of transition and measurement probabilities. A number of methods has been
developed using different representations for the discretization. Topological
graphs, grids, and particle filters are examples of these.

3.4.1.1 Topological Graphs

The location space can be discretized into a coarse, topological representation
with a limited set of robot actions, like for example four turning directions
[10]. Topological structures store information in the form of a network,
in which nodes represent locations and arcs between locations represent
information on how to get from one location to another.

The topological representation supports multiple ideas about the loca-
tion of the robot, since the representation supports multi-modal distribu-
tions. This may be necessary if the robot does not know where it is. It
might then have to maintain multiple hypotheses about its location. For ex-
ample, an environment might have three doors. If the robot does not know
where it is and it sees one door, it still does not know exactly where it is; it
can be in front of any one of the three doors. The topological representation
supports this situation since each node in the topological graph can have its
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own probability of corresponding to the true location. Therefore, this rep-
resentation can be used to solve the global localization problem. However,
the resolution of the representation in nodes and arcs is coarse and thus the
accuracy of the localization estimates can be rough.

With the topological representation, the complexity of the sensor and ac-
tion models reduces. The nodes of the network store only specific character-
istics of the locations. The observation models supply these characteristics.
The probabilities of observing the observations can be computed from ideal
observations as specified by the topological structure and an error model
[10]. The acquired probability distributions are not over the raw data, but
over the computed features. This has as disadvantage that if there are no
features to extract in the raw sensor data, then the robot cannot improve
its belief. The action model can be obtained from the connectivity of the
topological structure, since this structure connects locations with each other
with certain probabilities [10].

3.4.1.2 Grids

Instead of having a topological network, the location space can be represen-
ted by a fine-grained, regularly spaced grid with fixed spatial and angular
resolution, for example between 10 and 40 centimeters as x and y resolu-
tion, and between 2 and 5 degrees as orientation resolution [8]. Since the
representation is more fine-grained than topological approaches, grid maps
in general offer more accurate position estimates. As with the topological
representation, multi-modal distributions are supported, since probabilit-
ies are assigned with every cell in the grid. However, the accuracy of the
representation comes at computational costs increasing with finer resolution.
These costs can be reduced by using selective updating strategies [19]. These
strategies have as consequence that locations that are likely to be the true
location get more attention than locations that are less likely to be the true
location.

Selective updating can be implemented by thresholded updating [19].
That is, only the belief in those states x for which Bel(x) > ε, where ε
if some threshold, is updated. Another way of selective updating is to up-
date the belief of a fixed fraction of all locations, chosen according to the
latest belief.

With selective updating arises a problem when a location that is very
unlikely to be the true location is in fact the true location. If this is ignored
completely, then the belief will not adequately represent the true location.
An algorithm that uses selective updating should be aware of this and be
able to recover when the true location is not in the belief anymore.

Since no specific features are stored in the grid, the measurement model
does not have to extract any features from sensor data. Raw sensor data
can be used instead to update the grid [40]. This has the advantage that
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the localization also works in environments where no identifiable features
exist. However, the complexity of the sensor models increases, because a
probability has to be maintained for every raw sensor measurement.

3.4.1.3 Particle Filters

Yet another way of discretization of the location space is by representing
the belief by a set of m weighted samples distributed according to the belief
[20]. Each sample is a location and the weights are non-negative factors
called importance factors, which sum up to one. These factors indicate
how important each sample is. The importance factor is determined by the
likelihood of that sample given the latest absolute observation.

This recent technique is used in particle filter methods. A particle fil-
ter implementation for the localization problem is Monte Carlo Localization
[20]. Localization results achieved with this technique have shown to be
more efficient and accurate than the earlier discussed methods. The tech-
nique does not rely on a grid representation and therefore does not suffer
from the inherent computational costs. By adjusting the number of samples
taken from the belief distribution online, the balance between accuracy and
computational costs can be adjusted. Particle filters are the interest of cur-
rent state-of-the-art localization research.

3.4.2 Continuous Belief

Instead of using a discrete representation to deal with continuous spaces, we
can maintaining a probability density function over the locations. There is
not a probability stored for every location; instead only the parameters of
the probability function that describes the probability density are stored.

In order to keep the computations involved in calculating the probabilit-
ies analytically low, the assumption can be made that the probability dens-
ities of the belief and models are Gaussian distributed. A Gaussian density
is fully characterized by two parameters, the mean and the variance. The
mean gives the weighted average over the probabilities; the variance gives
the uncertainty. The larger the variance is, the more uncertainty there is in
the mean being the true average.

3.4.2.1 Kalman Filters

A Kalman Filter (KF) is a mathematical tool to estimate the state of a noisy
dynamic system using noisy measurements related to the state [3]. KFs
assume that the action and sensor models are subject to Gaussian noise,
and assume that the belief can be represented by one Gaussian function.
In practice, this might not always be the case, but it does allow the KF to
efficiently make its calculations [19].
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With the Gaussian noise assumption, the KF can be used to propagate
the belief through time and incorporate information from measurements. If
the dynamic system can be described using linear equations, then the KF is
an optimal state estimator for virtually any kind of meaningful criterion of
optimality [21].

There is a disadvantage of choosing the Gaussian representation for the
belief. Choosing this representation is a restrictive way of representing the
location space. A Gaussian is a uni-modal density, i.e., it has only one peak.
Thus, it does not allow multiple ideas about locations. There is only one
best location estimate, corresponding to the mean of the belief. Therefore,
representing the state space with a Gaussian can only be done when the
initial location of the robot is known. The representation can only be used
to solve the position tracking problem. For the other localization problems
ways to get around the Gaussian belief have to be found.

3.5 Summary

We can approach the robot localization problem from a probabilistic point
of view. By looking at the problem probabilistically, the concepts of un-
certainty and probabilities automatically come into the picture. Instead of
being sure of one location, the robot considers the whole space of locations
to be possible locations. It has a belief over the location space.

A robot starts with an initial belief. This belief can be a uniform distri-
bution if the robot has no idea where it is, or it can be a distribution with
one peak at the right location if the robot knows, or thinks it knows, where
it is.

While navigating through the environment the robot gets position in-
formation in the form of action and sensor measurements corresponding to
relative and absolute measurements respectively. If the probability distribu-
tions of these measurements are known, then they can be incorporated into
the location belief of the robot. We refer to the belief resulting from incor-
porating a relative measurement as prior belief, and to the belief resulting
from incorporating an absolute measurement as posterior belief.

By means of the Bayes’ rule and the Markov assumption, we derive a
formula that recursively computes the posterior belief given relative and
absolute measurements,

Bel+(xk) =
P (zk|xk)

∫
Ξ P (xk|xk−1, ak−1)Bel+(xk−1)dxk−1

P (zk|z1, a1, . . . , zk−1, ak−1)
.

To implement the derived formula, we need to specify three probability
densities: the action model, the perceptual model, and the initial belief.
Implementing the localization formula is not straightforward. The complex-
ity of the location space representation and the complexity of the action and
sensor models play important roles.
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Different localization methods deal with these two complexity issues in
different ways. By representing the location space continuously as a para-
meterized probability density, like a Gaussian as in Kalman Filters, the
computations involved are greatly reduced. However, unimodal distribu-
tions with one peak, like Gaussians, do not allow more than one hypothesis
about the location. By discretization of the location space and representing
it as a topological or grid map, distributions with multiple peaks are pos-
sible. Grid-based approaches are more accurate than topological based, but
they come at higher computational costs. State-of-the-art particle filters are
accurate and efficient by using a selected set of weighted samples as belief
representation.

To deal with the complexity in the sensor and action models, the mod-
els can be assumed to be Gaussian distributed and linearly related to the
location. However, in practice this might not always be the case. By repres-
enting the sensor models as probability distributions over extracted features,
the complexity can be decreased significantly. However, if no features are
present, then that can be a problem. By using raw sensor data the data is
always useful, but the complexity of the sensor model is high. In those cases
it might be useful to let the robot learn the sensor model itself.



Chapter 4

Kalman Filters

As discussed in Chapter 3, the representation of the belief has a significant
effect on the computational efficiency in calculating the belief. One way to
deal with the computational complexity of beliefs over continuous spaces
is by representing the belief as a parameterized continuous function. The
Kalman Filter (KF) is a means to calculate beliefs that are represented by
Gaussians. In this chapter we thoroughly investigate how KFs work and
how they use Gaussian functions to update beliefs.

We start our KF discussion in Section 4.1 with a quick overview of what
a KF is, how it is used, and where it comes from. In Section 4.2 we show
by example the basic concepts involved in the KF. In Section 4.3 we go
into more detail when we more formally state what kind of problem the
KF solves. We discuss the assumptions made by the KF in Section 4.4,
and prepare the derivation of the KF equations using these assumptions
in Section 4.5. We are then ready to formally derive the KF equations in
Section 4.6, after which we in Section 4.7 present the resulting algorithm
as the Linear Kalman Filter and look at the meaning of the equations. We
proof that the KF is a so called minimum variance estimator in Section 4.8
and make the KF equations that we have derived more generally applicable
in Section 4.9.

4.1 Kalman Filters

In short, a Kalman Filter [23, 29, 21, 15, 38, 50] is a recursive data processing
algorithm that estimates the state of a noisy linear dynamic system.

When we talk about the state of a system we mean a vector x consisting
of n variables describing some interesting properties of the system. An
example of a state is the location of a robot, consisting of the x and y
coordinates, and the orientation φ of a robot.

The fact that the variables of the state might be noisy and not directly
observable makes the state estimation difficult. To estimate the state a KF
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has access to measurements of the system. Those measurements are linearly
related to the state and are corrupted by noise. If these noise sources are
Gaussian distributed, then the KF estimator is statistically optimal with
respect to any reasonable measure for optimality [21].

The KF processes all available measurements to estimate the state, both
accurate and inaccurate measurements. It uses knowledge of the system and
sensor dynamics, probabilistic descriptions of the system and measurement
noises, and any available data about the initial values of the state.

The methodology and terms used in the KF have their origins in many
different disciplines [21]. Least squares, least mean squares, probability
theory, dynamic systems, stochastic systems, and mathematical foundations
like linear algebra all have had their influence on the design of the KF. On
itself, the KF is part of the foundations of disciplines like modern control
theory and statistical decision theory.

Some authors have called the discovery of the KF one of the greatest
discoveries in the history of statistical estimation theory, and possibly the
greatest in the twentieth century [21]. The KF has been used in many
application areas ever since Richard Kalman discovered the idea in 1960
[23]. The KF has made it possible for humans to do things that would not
have been possible without it. In modern technology, KFs have become as
indispensable as silicon chips [29].

4.1.1 Applications

The KF has been used in a wide range of applications. Control and predic-
tion of dynamic systems are the main areas [21].

When a KF controls a dynamic system, it is used for state estimation.
When controlling a system, it is important to know what goes on in the sys-
tem. In complex systems it is not always possible to measure every variable
that is needed for controlling the system. A KF provides the information
that can not directly be measured by estimating the values of these vari-
ables from indirect and noisy measurements. A KF can for example be used
to control continuous manufacturing processes, aircrafts, ships, spacecrafts,
and robots [3, 12, 13, 21, 24, 29, 48, 41].

When KFs are used as predictors, they predict the future of dynamic
systems that are difficult or impossible for people to control. Examples of
these systems are the flow of rivers during flood, trajectories of celestial
bodies, and prices of traded goods [29, 21].

4.2 Example

Before getting started with the formal derivation of the KF equations, it is
beneficial to get a first idea of how the KF works. Suppose that a robot
navigates around in an environment and wants to localize itself. As we have
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seen, a robot is subject to sources of noise when it drives around. To estimate
its location we assume that the robot has access to absolute measurements.

Models. In order to say someting about the location of the robot, we
model the system of a navigating robot. That is, we model how the location
of the robot changes over time. We assume for simplicity that the robot
drives at constant speed s, and that we have a system model that describes
the true location xk of the robot over time,

xk = xk−1 + s+ wk, (4.1)

where the new location xk depends on the previous location xk−1, the con-
stant speed per time step s, and a noise term wk. We assume that the
noise is zero-mean random noise, and moreover Gaussian distributed. This
means that on average the noise is zero, but sometimes somewhat higher,
and sometimes somewhat lower. Let us denote the deviation in the noise by
σw.

If we want to use absolute measurements in estimating the location, we
need to describe how these measurements are related to the location. We
assume that we have a measurement model that describes how measurements
zk depend on the location xk of the robot,

zk = xk + vk, (4.2)

where the sensor in this case gives measurement zk of the location of the
robot xk, corrupted by measurement noise vk. We assume that the noise is
zero on average, Gaussian distributed, and that it has a deviation of σv.

Initialization. Assume that we have an initial estimate of the location of
the robot x̂0 and that we have an uncertainty, that is, variance, of σ2

0 that
this is the true location.

Prediction. Assume that the robot drives for one time step. From the
system model we know that the location will on average change with about
s. We can update the estimate of the location with this knowledge. That is,
with the system model we can predict what the location of the robot most
likely is after one step. We calculate the new location x̂1 at step k = 1 as

x̂1 = x̂0 + s+ 0. (4.3)

We hereby took the noise component in the system equation as zero. Al-
though from equation (4.1) we know that the state is corrupted by noise,
we do not know the exact amount of noise at a certain time. Since we know
that the noise on average is zero, we used wk = 0 in calculating the new
location estimate.
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We do also know how the noise varies around zero. We can use this to
update the uncertainty in the new estimate. We calculate the uncertainty
σ2

1 that we have in our new estimate as

σ2
1 = σ2

0 + σ2
w. (4.4)

Correction. If the robot keeps on driving without getting any absolute
measurements, the uncertainty in the location given by equation (4.4) will
increase more and more. If we do make an absolute measurement, we can
update the belief in the location and reduce the uncertainty in it. That is,
we can use the measurement to correct the prediction that we made.

Assume that we make an absolute measurement z1. We want to com-
bine this measurement into our estimate of the location. We include this
measurement in the new location estimate using a weighted average between
the uncertainty in the observed location from the measurement z1 and the
uncertainty in the estimate that we already had x̂1,

x̂+
1 =

σ2
v

σ2
1 + σ2

v

x̂1 +
σ2

1

σ2
1 + σ2

v

z1

= x̂1 +
σ2

1

σ2
1 + σ2

v

(z1 − x̂1). (4.5)

This way of incorporating the measurement has as consequence that if there
is relatively much uncertainty σ2

1 in the old location estimate, that we then
include much of the measurement. On the other hand, if there is relatively
much uncertainty σ2

v in the measurement, then we will not include much of
it.

Absolute measurements do not depend on earlier location estimates; they
provide independent location information. Therefore they decrease the un-
certainty in the location estimate. Realize that probabilities represent pop-
ulations of samples in a way like mass represents populations of molecules.
With this, we notice that we can combine the uncertainty in the old location
estimate with the uncertainty in the measurement in the same way as we
can combine moments of inertia, measures of the distribution of the mass in
objects [13]. This gives us the uncertainty σ2,+

1 in the new location estimate
as

1
σ2,+

1

=
1
σ2

1

+
1
σ2
v

,

which we can rewrite into

σ2,+
1 = σ2

1 −
σ2

1

σ2
1 + σ2

v

σ2
1. (4.6)

Notice in this equation that incorporating new information always results in
lower uncertainty in the resulting estimate. The uncertainty σ2,+

1 is smaller
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than or equal to both the uncertainty in the old location estimate σ2
1 and

the uncertainty in the measurement σ2
v . Notice also that we in (4.5) and

(4.6) use the same weighting factor. We introduce a factor K representing
this weighting factor and rewrite (4.5) and (4.6) into

x̂+
1 = x̂1 +K(z1 − x̂1), (4.7)

σ2,+
1 = σ2

1 −Kσ2
1

= (1−K)σ2
1, (4.8)

where

K =
σ2

1

σ2
1 + σ2

v

. (4.9)

Factor K is a weighting factor that determines how much of the information
from the measurement should be taken into acount when updating the state
estimate. If there is almost no uncertainty in the last location estimate,
that is, if σ2

1 is close to zero, then K will be close to zero. This has as a
consequence that the received measurement is not taken into great account.
If the uncertainty in the measurements is small, that is, if σ2

v is small, then
K will approach one. This implies that the measurement will in fact be
taken into account.

Essence. With these equations we have in essence shown the equations
that the KF uses when the state and measurements consist of one variable.
The KF estimates the state of a system that can be described by a linear
equation like (4.1). For the purpose of reducing the uncertainty, the KF
uses measurements that are modeled according to a linear equation like (4.2).
Starting from an initial state, the KF incorporates relative information using
equations (4.3) and (4.4). To incorporate absolute information, the KF uses
equations (4.7) and (4.8) with means of the K factor from equation (4.9).

In the following sections we will formalize the concepts that we used here
and derive the general KF equations that can also be used when the state
we want to estimate consists of more than one variable.

4.3 Concepts

The KF is a state estimator that works on a prediction-correction basis. This
means that it computes a belief in a certain state estimate by first making
a prediction based on the dynamics of the system and later correcting this
prediction using measurements of the system.
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4.3.1 State Estimator

The main idea of the KF is that it estimates the true state of some system,
like for example the location of a mobile robot. In particular, it estimates
the state and gives a measure of how certain it is that the state estimate is
the true state. What makes estimating the state difficult is that the state
may change over time and is subject to noise. Besides this, the variables of
the state may not be directly observable. The KF uses sensor readings that
can make observations of the state; sensor readings that are also corrupted
by noise. With all these complicating factors, the KF still has to optimally
use the measurements to estimate the state.

4.3.2 Beliefs

More formally, the KF estimates the conditional probability of being in state
xk given available measurements z1, . . . , zk. We call the probability of being
in state xk given observations z1, . . . , zk the belief 1,

Bel(xk) = P (xk|z1, . . . , zk). (4.10)

We can split this belief definition into the prior belief Bel−(xk) and the
posterior belief Bel+(xk) using Bayes’ rule, the theorem of total probability,
and the Markov assumption. We then get2,

Bel−(xk) = P (xk|z1, . . . , zk−1) (4.11)

=
∫

Ξ
P (xk|xk−1)Bel+(xk−1)dxk−1

Bel+(xk) = P (xk|z1, . . . , zk)

=
P (zk|xk)Bel−(xk)
P (zk|z1, . . . , zk−1)

. (4.12)

The prior belief is the conditional probability of being at state xk given all
the measurements z up to step k. The posterior belief is the conditional
probability of being at state xk given all the measurements z up to and
including step k. In order to compute the beliefs, we need to find expressions
for the system model P (xk|xk−1) and the measurement model P (zk|xk).

4.3.3 Prediction-Correction

Prediction. The KF computes the belief by first computing the prior
belief and then computing the posterior belief. The computation of the prior
belief Bel−(xk) in equation (4.11) can be seen as a prediction of the state
of the system after one time step. Without looking at new measurement

1This is in a similar way as we did in Chapter 3.
2See Chapter 3 for details.
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information, the prior belief estimates what the state of the system after
one step most likely is. It uses a model of the system P (xk|xk−1) and the
belief in what the state was at the last time step Bel+(xk−1).

Correction. Due to noise in the system, there may be a prediction error.
That is, the prediction may be different from the true state. The compu-
tation of the posterior belief Bel+(xk) in equation (4.12) can be seen as a
correction of the state estimate resulting from the prediction. After the KF
has calculated the prior belief, new measurement information gives direct
information about the true state of the system. This measurement inform-
ation can be used to correct the predicted state. For this the KF uses a
model of the measurements P (zk|xk). This model describes how likely it is
that given a state xk a sensor reading results in measurement zk. Given this
model and a real measurement, the KF corrects the prior belief in the state
Bel−(xk).

This described the main idea of the KF. It first predicts the true state
of the system after a time step has passed and it then corrects its prediction
using measurements that are made of the true state. The KF is therefore
also called a predictor-corrector state estimator [29].

4.4 Assumptions

In order to predict and correct the belief, the KF needs a model of the system
and measurements. The KF assumes a Linear Dynamic System description
of the system of which it is estimating the state. The dynamic system may
be corrupted by noise sources, which the KF assumes can adequately be
modeled by independent, white, zero-mean, Gaussian distributions.

4.4.1 Linear Dynamic System

The KF assumes that the system state and measurements can be described
by a linear dynamic system [29, 21]. This is a set of linear equations that
models the evolution of the state of the system over time and that describes
how measurements are related to the state. The KF assumes a linear model,
since it simplifies the computations and since often a linear approach is
adequate for the problem to be modeled. When the problem is not linear,
then we can use linearizing techniques to transform a non-linear problem into
a linear3. A linear dynamic system consists of a system and a measurement
model.

3We will discuss this in Chapter 5.
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System Model. The system model describes how the true state of the
system evolves over time. The KF needs this model in order to make pre-
dictions about the state. The KF assumes that the state of the system
evolves according to the linear equation

xk = Axk−1 + wk−1. (4.13)

The true state xk ∈ Rn of the system at time k depends on the state of the
system one step earlier xk−1 and some noise. Matrix A is an n × n matrix
that, without taking into account possible noise in the system, relates the
state of the previous time step k− 1 to the state at the current step k. The
vector wk−1 ∈ Rn models the noise in the system; it models the effects of
unmodeled influences on the system state.

Measurement Model. The measurement model describes how measure-
ments are related to states. The KF needs a model of the measurements
in order to correct the state prediction when a measurement is available. If
it has a model that given the true state of the system describes what the
measurement will be, then it can compare the real measurement with the
measurement that the model gives to correct the state prediction. The KF
assumes that the measurements can be modeled by an equation that linearly
relates the state of the system to a measurement,

zk = Hxk + vk. (4.14)

The true measurement zk ∈ Rm at time k depends linearly on the state
of the system xk. The m × n matrix H relates the current state xk to
the measurement zk. Given a state, H models what the real measurement
should be when there is no noise in the sensors. However, there is noise in
the measurements, which is modeled by the vector vk ∈ Rm.

Markov process. Notice in equation (4.13) that the state xk at time k
does not depend on all other states and measurements given xk−1. Notice
also in equation (4.14) that, given xk, the measurement zk does not depend
on all other states and measurements. These properties make the system a
Markov process.

4.4.2 Noise Characteristics

As mentioned and modeled, the system and sensors are subject to noise.
The KF assumes that the system noise wk in (4.13) and measurement noise
vk in (4.14) are random variables that are independent, white, zero-mean
Gaussian probability distributions. Besides this, the KF assumes that the
initial state of the system x0 at time k = 0 is independent and Gaussian
distributed.
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Independence. The independence assumption makes the computations
involved in the state estimation easier. In general it is fair to assume that the
noise in system and measurements are independent. That is, the amounts of
noise have no influence on each other. For example, noise in color intensities
in camera images does not influence noise in the guidance system of a robot.

White Noise. The white noise assumption also greatly simplifies the
mathematics involved in the filter. White noise is noise that has power
at all frequencies in the spectrum and that is completely uncorrelated with
itself at any time except the present [29]. At the current time, the noise is
either there, or it is not, which is also true for the next time steps. This
assumption implies that errors are not correlated through time. This means
that knowing the amount of noise at the current time does not help in pre-
dicting what the amount of noise will be at any other time.

Zero-mean. The zero-mean assumption implies that the errors in system
and measurements are random. Noise can be classified into systematic noise
and non-systematic or random noise [39]. Systematic noise is noise that
constantly corrupts the system state or measurements in a certain way. It
is biased noise, often caused by inaccurate parameters. For example, if the
diameter of wheels of a guidance system is not accurately determined, there
will be a systematic error in the position estimation. Random noise is noise
that is not systematic in that way. Random noise is sometimes positive,
sometimes negative, but, in the case of zero-mean, on average zero.

Gaussian. The Gaussian assumption deals with the amplitude of the
noise. It states that the amount of noise involved can be modeled as a
bell-shaped curve. The Gaussian noise assumption is justified by assuming
that system and measurement noise are often caused by multiple small noise
sources. No matter how the individual noise sources are distributed, the sum
of these independent sources will be Gaussian distributed [29]. The Gaussian
noise assumption makes the computations of the filter more tractable.

Another reason why Gaussian noise is a convenient assumption is that
we often only know the first and second order statistics of the noise sources
[38], that is, the mean and variance. Many measuring devices provide only
a nominal value of the measurement. By running experiments and looking
at sensor specifications we can estimate the average error [38]. Gaussians
are fully characterized by their mean and variance and therefore capture all
available noise information.

With the zero-mean and Gaussian distribution assumptions for the noises,
we can write down how they are distributed. If we let Qk = E[(wk)(wk)

T ]
be the process noise covariance at time step k and Rk = E[(vk)(vk)

T ] be
the measurement noise covariance at time step k, we can express the system
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noise wk and the measurement noise vk as

wk ∼ N(0, Qk) (4.15)
vk ∼ N(0, Rk), (4.16)

where N(µ,Σ) denotes the Gaussian function with mean µ and covariance
Σ. The main diagonal of the covariance matrices Qk and Rk contains the
variance in the state and measurement vector variables respectively. The off-
diagonal elements are zero, since we assume that the noises are independent.

4.5 Gaussian Implications

The assumption that the random variables involved are Gaussian distrib-
uted brings some useful features. Gaussian distributions are fully character-
ized by their mean and their covariance. With the Gaussian assumption it
therefore suffices to compute the mean and the covariance of the prior and
posterior belief. In this section we look at how we can express the system
and measurement models in terms of Gaussians and what consequences the
Gaussian assumption has for the computation of the beliefs themselves.

4.5.1 System and Measurement Models

Gaussian System Model. We want to know how the system model from
equation (4.13) is distributed given the Gaussian assumption, since this is
the distribution P (xk|xk−1) needed to compute the prior belief from equation
(4.11). As mentioned the evolution of the state of the system is modeled by
a linear equation as

xk = Axk−1 + wk−1,

in which system noise wk−1 is zero-mean Gaussian distributed with covari-
ance Qk, as in (4.15). We can look at the term Axk−1 in this equation
as Gaussian distributed with mean Axk−1 and covariance 0, so, Axk−1 ∼
N(Axk−1, 0). There is no uncertainty in this term since the system model
distribution P (xk|xk−1) we are looking for is conditioned on xk−1. Given
that the sum of two Gaussian random variables results in another Gaussian
random variable, we derive the probabilistic system model as

P (xk|xk−1) = N(Axk−1, Qk). (4.17)

Gaussian Measurement Model. In the same way we want to find the
probabilistic characteristics of the measurement model from equation (4.14),
since this is the distribution P (zk|xk) needed to compute the posterior be-
lief from equation (4.12). The measurements are modeled according to the
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measurement model

zk = Hxk + vk,

where measurement noise vk is zero-mean Gaussian distributed with covari-
ance Rk, as in (4.16). In this, we again look at the term Hxk as a Gaussian
distribution with mean Hxk and no uncertainty, so, Hxk ∼ N(Hxk, 0).
There is no uncertainty since the measurement model is conditioned on xk.
Given these two Gaussian distributions, we see that the conditional prob-
ability of observing zk given xk is Gaussian distributed as

P (zk|xk) = N(Hxk, Rk). (4.18)

4.5.2 Gaussian Beliefs

Recall that the prior belief is the belief in a state xk given all the inform-
ation up to step k and that the posterior belief is the belief using all the
information up to and including step k. With the Gaussian assumption we
can express the way those beliefs are distributed more precisely.

Gaussian Prior Belief. Since Gaussians are fully characterized by their
mean and covariance, the prior belief is distributed asBel−(xk) = N(x̂−k , P

−
k ),

where we let x̂−k be the mean and P−k be the covariance. We will also refer
to the mean x̂−k as the prior state estimate, and to the covariance P−k as the
prior error covariance. The prior state estimate and error covariance are
defined as the first and second statistical moments,

x̂−k = E[xk|z1, . . . , zk−1] (4.19)

P−k = E[(e−k )(e−k )T |z1, . . . , zk−1], (4.20)

where e−k is the prior estimation error in the state estimate,

e−k = xk − x̂−k . (4.21)

Gaussian Posterior Belief. Similarly, the posterior belief is distributed
as Bel+(xk) = N(x̂+

k , P
+
k ), where we let x̂+

k be the mean and P+
k be the

covariance. We will mention the mean x̂+
k also as the posterior state estimate,

and the covariance P−k as the posterior error covariance. The posterior state
estimate and error covariance are defined as

x̂+
k = E[xk|z1, . . . , zk] (4.22)

P+
k = E[(e+

k )(e+
k )T |z1, . . . , zk], (4.23)

where e+
k is the posterior estimation error in the state estimate,

e+
k = xk − x̂+

k . (4.24)
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State Estimates and Error Covariances. The state estimates x̂−k and
x̂+
k are vectors that given the available data are most likely to represent

the true state xk of the system. The error covariance matrices P−k and P+
k

contain the covariances between the different elements of the state estimate.
In particular, the leading diagonal of these matrices contains the variances of
the separate elements of the state estimate. The variances give an indication
of how precise the KF thinks the state estimate elements are estimated. The
smaller the variances are, the more precise the state estimate is.

The state estimates in (4.19) and (4.22) and error covariances in (4.20)
and (4.23) depend on the random measurements z1, . . . , zk, and thus they are
random variables themselves. We can proof however that the measurements
do not influence the prior and posterior error covariances [51]. We proof that
the measurements do not influence the posterior error covariance by showing
that the correlation between the posterior error e+

k and the measurements
z1, . . . , zk disappears. For notational convenience we let zk be the sequence
of measurements z1, . . . , zk. We use the definition of the posterior error
from (4.24) and the definition of the posterior state estimate from (4.22) to
compute the correlation as

E[e+
k z

k] = E[xkzk]− E[x̂+
k z

k]

=
∫
p(xk, zk)xkzkdxkdzk −

∫ (∫
p(xk|zk)xkdxk

)
p(zk)zkdzk

=
∫
p(xk, zk)xkzkdxkdzk −

∫
p(xk|zk)p(zk)xkzkdxkdzk (4.25)

= 0.

Expression (4.25) equals zero, since p(xk, zk) = p(xk|zk)p(zk). So, the cor-
relation between the estimation error and the measurements disappears, in-
dicating that they are independent of one another when they are Gaussian
distributed [51].

4.6 KF Equations

With the discussion of the assumptions and the implications that the as-
sumptions have on the state estimation, we are now prepared to derive the
equations that make up the KF. We start by deriving the equations for
the prior belief and then use the results in deriving the equations for the
posterior belief.

4.6.1 Prior Belief

Calculating the prior belief comes down to calculating the prior state estim-
ate x̂−k from equation (4.19) and the prior error covariance P−k from equation
(4.20).
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Prior State Estimate. The prior state estimate is defined as the expected
state xk given all measurements up to and including the last step k− 1. By
using knowledge of the evaluation over time of the state captured in the
system equation (4.13) we can express the prior state estimate x̂−k as

x̂−k = E[xk|z1, . . . , zk−1]
= E[Axk−1 + wk−1|z1, . . . , zk−1]
= AE[xk−1|z1, . . . , zk−1] + E[wk−1|z1, . . . , zk−1]
= AE[xk−1|z1, . . . , zk−1] + E[wk−1]
= Ax̂+

k−1. (4.26)

Here we have used that the system noise is assumed to be independent of
the measurements, which implies that E[zk, wl] = 0 for k ≤ l. Besides this,
we have also used that the system noise has zero mean from (4.15).

Prior Error Covariance. To calculate the prior covariance from equation
(4.20), we first have to calculate the prior error e−k in the state estimate from
(4.21). We evaluate this error estimate using the system equation (4.13) and
the equation for the prior state estimate x̂−k , equation (4.26),

e−k = xk − x̂−k
= Axk−1 + wk−1 −Ax̂+

k−1

= A(xk−1 − x̂+
k−1) + wk−1

= Ae+
k−1 + wk−1. (4.27)

Note that the posterior error estimate e+
k−1 is independent of the system

noise wk−1. To see this, notice that the posterior error estimate e+
k−1 is a

function of xk−1 and x̂+
k−1, equation (4.24); the latter of these is a function

of z1, . . . , zk−1, equation (4.22). We assumed that the system noise wk−1 is
independent of the true state and the true measurements. Thus, the system
noise is independent of the posterior error estimate.

We can now calculate the prior error covariance P−k from (4.20). We
substitute the prior error estimate (4.27) into (4.20),

P−k = E[(e−k )(e−k )T ]

= E[(Ae+
k−1 + wk−1)(Ae+

k−1 + wk−1)T ]

= AE[(e+
k−1)(e+

k−1)T ]AT + E[(wk−1)(wk−1)T ]

= AP+
k−1A

T +Qk−1. (4.28)

Prediction. We have derived the equations that the KF uses to update
the belief when the system moves one step forward in time. Using equation
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(4.26) the KF predicts what the state of the system most likely is. Using
equation (4.28) the KF expresses how much uncertainty there is in the state
estimate being the true state. If we combine this, we can express the prior
belief in terms of a Gaussian distribution as

Bel−(xk) = N(x̂−k , P
−
k ) (4.29)

= N(Ax̂+
k−1, AP

+
k−1A

T +Qk−1). (4.30)

4.6.2 Posterior Belief

In order to find expressions for the posterior state estimate and error cov-
ariance we will do some rewriting first. We substitute the Gaussian repres-
entation of the measurement model (4.18) and the prior belief (4.29) into
the definition for the posterior belief (4.12),

Bel+(xk) =
Nzk(Hxk, Rk)Nxk(x̂−k , P

−
k )

P (zk|z1, . . . , zk−1)
, (4.31)

where the subscripts zk and xk in Nzk and Nxk denote the spaces over
which the Gaussians are distributed. That is, the prior belief Nxk(x̂−k , P

−
k )

is a probability distribution over the space of states xk, and the measure-
ment model Nzk(Hxk, Rk) is a probability distribution over the space of
measurements zk.

We want to combine these probability distributions into a distribution
over the state space. We achieve this in two steps. First we convert the
measurement model from measurement space to state space, and then we
combine the resulting Gaussian with the prior belief to form the posterior
belief in state space.

Converting Measurement Model to State Space. Since we want the
posterior belief to be a distribution over the state space, we convert the
measurement model to the state space. This can be done by means of the
identity [51]

Nz(Ax,Σ) = k1(z)Nx(d,D),

d = (ATΣ−1A)
−1
ATΣ−1z

D = (ATΣ−1A)
−1
.

This identity states that a Gaussian distribution Nz over some z space that
has as mean a linear combination A of some vector x and as variance Σ can
be converted into a factor k and a Gaussian distribution with mean d and
covariance D over the space of which vector x is an element.



4.6 KF Equations 47

If we apply this identity to the measurement model Nzk(Hxk, Rk) we
get as result the Gaussian Nxk(µ′,Σ′) over the state space,

Nzk(Hxk, Rk) = k1(zk)Nxk(µ′,Σ′), (4.32)

µ′ = (HTR−1
k H)

−1
HTR−1

k zk

Σ′ = (HTR−1
k H)

−1
.

Substituting this result into (4.31), we get

Bel+(xk) =
k1(zk)Nxk(µ′,Σ′)Nxk(x̂−k , P

−
k )

P (zk|z1, . . . , zk−1)
. (4.33)

The posterior belief is now reduced to the product of two Gaussians in state
space times the factor k1(zk)/P (zk|z1, . . . , zk−1).

Combining Measurement Model and Prior Belief. To combine the
two Gaussians over state space from equation (4.31) into one Gaussian over
state space we use another identity. This identity combines the product of
two Gaussians in the same space to the product of one Gaussian in that
same space and another in the space of which the mean of the first is part
[51],

Nx(a,A)Nx(b, B) = Nx(c, C)Na(d,D), (4.34)

c = (A−1 +B−1)−1(A−1a+B−1b)

C = (A−1 +B−1)−1

d = b

D = A+B

We use this identity to rewrite the posterior belief as formulated in (4.33)
once more. Applying (4.34), letting a = x̂−k , A = P−k , b = µ′, and B = Σ′,
we obtain

Bel+(xk) =
k1(zk)

P (zk|z1, . . . , zk−1)
Nxk(µ′′,Σ′′)Nx̂−k

(µ′′′,Σ′′′) (4.35)

µ′′ = ((P−k )−1 + Σ′−1)
−1

((P−k )−1
x̂−k + Σ′−1µ′)

Σ′′ = ((P−k )−1 + Σ′−1)
−1

µ′′′ = µ′

Σ′′′ = P−k + Σ′.

In this, the factor

k1(zk)Nx̂−k
(µ′′′,Σ′′′)

P (zk|z1, . . . , zk−1)
,
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equals 1 according to [51], since the posterior belief must be normalized with
respect to xk. We thus have that

Bel+(xk) = Nxk(µ′′,Σ′′). (4.36)

With the result of (4.36) we have in fact determined the posterior state
estimate as µ′′, and the posterior error covariance as Σ′′. With some rewrit-
ing we can make the computation of these quantities more efficient.

Posterior State Estimate. From (4.36) we see that we can express the
posterior state estimate as

x̂+
k = µ′′

=
((
P−k
)−1 +

((
HTR−1

k H
)−1
)−1

)−1

×
((
P−k
)−1

x̂−k +
((
HTR−1

k H
)−1
)−1 ((

HTR−1
k H

)−1
HTR−1

k zk

))
=
((
P−k
)−1 +HTR−1

k H
)−1
×
((
P−k
)−1

x̂−k +HTR−1
k zk

)
.

If we use the Matrix Inversion Lemma [29, 51] we can simplify this further.
The Matrix Inversion Lemma states that if we have a d × d matrix P > 0,
a k× k matrix R > 0 and a k× d matrix H, where P > 0 implies aTPa > 0
for all a, then

(
P−1 +HTR−1H

)−1
= P − PHT

(
HPHT +R

)−1
HP (4.37)(

P−1 +HTR−1H
)−1

HTR−1 = PHT
(
HPHT +R

)−1
. (4.38)

Using these identities in our rewriting, we obtain

x̂+
k =

(
P−k − P

−
k H

T
(
HP−k H

T +Rk
)−1

HP−k

)
(P−k )−1

x̂−k

+ P−k H
T
(
HP−k H

T +Rk
)−1

zk

=
(
P−k −KkHP

−
k

)
(P−k )−1

x̂−k +Kkzk

= x̂−k −KkHx̂
−
k +Kkzk

= x̂−k +Kk(zk −Hx̂−k ), (4.39)

where

Kk = P−k H
T
(
HP−k H

T +Rk
)−1

. (4.40)
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Posterior Error Covariance. We see directly from (4.36) that the pos-
terior error covariance is

P+
k = Σ′′

=
((
P−k
)−1 +

((
HTR−1

k H
)−1
)−1

)−1

=
((
P−k
)−1 +HTR−1

k H
)−1

= P−k − P
−
k H

T (HP−k H
T +Rk)

−1
HP−k

= P−k −KkHP
−
k

= (I −KkH)P−k , (4.41)

where we have used the definition for Kk in (4.40).

Correction. With this final result we now also have derived the equations
that the KF uses to correct the prior belief into the posterior belief. The
KF uses equation (4.39) to calculate the posterior state estimate x̂+

k when
a measurement zk of the true state arrives. Using equation (4.41) the KF
updates the uncertainty P+

k that it has in the posterior state estimate being
the true state. In both equations, the KF uses equation (4.40) to calculate
the factorKk. With the derived posterior state estimate and error covariance
we characterize the posterior belief as

Bel+(xk) = N(x̂+
k , P

+
k )

= N(x̂−k +Kk(zk −Hx̂−k ), (I −KkH)P−k ), (4.42)

where Kk comes from (4.40).

4.7 Linear Kalman Filter

With the equations of Section 4.6, we have derived the equations of the
standard KF algorithm. Since this KF assumes that the system and meas-
urements are governed by linear equations, this KF is commonly known
as the Linear Kalman Filter (LKF). We first shortly describe the LKF
algorithm in Section 4.7.1 and give the equations in the algorithm more
meaning in Section 4.7.2.

4.7.1 Algorithm

The LKF consists of an initialization step after which it alternately performs
prediction and correction steps.



50 Kalman Filters

Initialization. The LKF is initialized with the posterior beliefBel+(x0) =
N(x̂−0 , P

−
0 ). That is, to initialize the LKF we have to specify the initial

posterior state estimate x̂+
0 and the initial uncertainty in this state estimate

P+
0 .

Prediction Equations. At every time step the system can be in a dif-
ferent state. Therefore, the LKF calculates a new prior belief at every step.
The prediction, or also time update or propagation, equations predict the
new state of the system by projecting forward the most recent belief. They
compute the prior belief Bel−(xk) = N(x̂−k , P

−
k ) as we derived in Section

4.6.1, where

x̂−k = Ax̂+
k−1 (4.43)

P−k = AP+
k−1A

T +Qk−1. (4.44)

Correction Equations. The correction, or also measurement update, equa-
tions deal with the measurements. They are only used when there is a meas-
urement. The measurements give direct information about the current state
of the system. The correction equations correct the most recent belief by
incorporating the information gained from measurements. They compute
the posterior belief Bel+(xk) = N(x̂+

k , P
+
k ) as we derived in Section 4.6.2,

where

x̂+
k = x̂−k +Kk(zk −Hx̂−k ) (4.45)

P+
k = (I −KkH)P−k , (4.46)

in which

Kk = P−k H
T
(
HP−k H

T +Rk
)−1

. (4.47)

The new posterior belief is used in the next time step to compute the
new prior belief. This recursive nature of KFs allows for practical imple-
mentations, because not all of the data is required to estimate the states.

4.7.2 Interpretation

4.7.2.1 Prediction Equations

The KF computes the prior state estimate x̂−k based on the last posterior
state estimate x̂+

k−1 and the model that it has of the system. The best guess
that the KF can make about the state of the system after it has progressed
one step forward in time is the last best guess propagated through the model
that the KF has of the system.

The KF also knows that the system evolution is subject to noise and
therefore it has an increased uncertainty P−k in the prior state estimate.
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The first term of the prior error covariance, AP+
k−1A

T , propagates the un-
certainty in the last posterior state estimate forward to the current prior
state estimate. The second term, Qk−1, is the system noise that corrupts
the state of the system at every time step.

4.7.2.2 Correction Equations

The KF computes the posterior state estimate by taking the prior state
estimate and combining this with the Kalman Gain Kk times the difference
between a measurement zk and a measurement prediction Hx̂−k , called the
innovation.

Measurement Prediction. The term Hx̂−k in equation (4.45) is a meas-
urement prediction. Given the prior state estimate x̂−k and the measurement
matrix H from the measurement model (4.14) the KF predicts what meas-
urement it will receive. We denote the measurement prediction by

ẑk = Hx̂−k + v̂k, (4.48)

where the measurement noise v̂k is zero. This measurement prediction is
a random variable that follows a Gaussian distribution. We see this by
noticing that it depends linearly on the prior state estimate x̂−k and the
measurement noise, which both are Gaussian random variables. We easily
derive that the measurement prediction ẑk follows the distribution

ẑk ∼ Nz(Hx̂−k ,HP
−
k H

T +Rk). (4.49)

Innovation. We call the difference between a measurement zk and a pre-
dicted measurement x̂−k the measurement innovation or residual z̃k. The
innovation tells how much a predicted measurement differs from a real meas-
urement. We define the innovation as

z̃k = zk − ẑk. (4.50)

If the innovation equals zero, then the predicted measurement exactly re-
flects the real measurement. This implies that the state estimate with which
the measurement prediction was made was very close to the true state from
which the measurement was made. However, if there is a difference between
the predicted and observed measurement, then the prior state estimate needs
to be updated with some quantity.

The innovation depends on the variables zk and ẑk. Since the true meas-
urements zk is given it does not add any uncertainty to the innovation.
The uncertainty in the innovation only depends on the uncertainty in the
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measurement prediction ẑk, and is thus Gaussian distributed,

z̃k ∼ Nz(µz̃,k,Σz̃,k) (4.51)
µz̃,k = zk − ẑk
Σz̃,k = HP−k H

T +Rk. (4.52)

Notice that if there is in fact uncertainty in the true measurement, due
to for example uncertainty in the feature extraction, then the uncertainty
in the innovation should be increased with this. The distribution of the
innovation gives an idea of the spread of the innovations. It gives an idea
of the errors in the measurement estimations. We can use this distribution
to detect innovations that are very unlikely to occur. This gives a means of
detecting occassional extreme noise levels in measurements. When we use
the innovation distribution to reject measurements, we say that we have a
validation gate [21].

As mentioned, when the innovation is large this indicates that there is a
large difference between the prior state estimate and the true state. A naive
way to combine the prior state estimate and the measurement innovation is
by simply summing the two. However, if the measurements or measurement
predictions are very uncertain relative to the prior state estimate this is not
a good solution; in that case it is better to ignore the innovation. On the
other hand, if the measurement innovation has relatively low uncertainty
compared to the prior state estimate, then it is good to take much of the
innovation into account.

Kalman Gain. We call the factor Kk in (4.47) the Kalman Gain (KG).
This factor determines to what extend the innovation should be taken into
account in the posterior state estimate. It determines this by looking at the
relative uncertainty between the prior state estimate and the measurement
innovation,

Kk = P−k H
T
(
HP−k H

T +Rk
)−1

.

To compare the prior state estimate uncertainty in the state space with
the innovation uncertainty in the measurement space, the KF converts the
uncertainty in the measurement space to the state space by means of the
matrix HT .

Notice what happens when the noise in the measurements is almost
zero. When the measurement error covariance Rk approaches zero, the KG
weights the innovation more heavily. That is, the measurement innovation
z̃k is trusted to contain more information than the prior state estimate,

lim
Rk→0

Kk = H−1. (4.53)
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The KF relies less on the system model, and more on the measurements.
Contrarily, when the prior error covariance P−k approaches zero, the KG

weights the residual less heavily. That is, as the prior error covariance P−k
approaches zero, the measurement residual z̃k is taken less into account,

lim
P−k →0

Kk = 0. (4.54)

The KF relies more on the system model, and less on the measurements.

Posterior Uncertainty. The KF also uses the KG to update the uncer-
tainty that the KF has in the posterior state estimate being the true state.
If the KG is close to H−1 the measurement innovation is taken into account
almost completely. This means that the KF believes that the innovation
contains relatively much information compared to the prior state estimate.
This on its turn results in maximum decrease of uncertainty in the state
estimate.

In particular, if the observations observe the values of every state variable
directly, and there is a large amount of uncertainty in the prior state estimate
relative to the measurements, then the KG will be close to H−1 and the
posterior error estimate will be close to zero. This has as consequence that
the KG will take following measurements not much into account, since the
uncertainty in the state is so small and thus the KG will be low. The time
it takes before the KF will significantly take innovations into account again
depends on the amount of system noise added to the uncertainty of the prior
state estimate at every time step.

The KG forms the heart of KFs. In Section 4.8 we will proof that the KG
that we derived has as result that the KF is a Minimum Variance Estimator.
That is, it minimizes the variance in the state estimates.

4.8 Minimum Variance Estimator

We can proof that the KG that is used by the KF to determine which part
of the measurement innovation it should incorporate in its posterior state
estimate minimizes the posterior error covariance. That is, when a new
measurement arrives, the KF uses the KG to incorporate this measurement
into the state estimate in such a way that the uncertainty in the state es-
timate is minimal after incorporation.

To proof that the derived KG minimizes the posterior error covariance,
we show that the Kk that minimizes the sum of the variances in the posterior
error covariance P+

k is in fact the Kk that we derived. The variances in the
posterior error covariance are located on the leading diagonal. The trace of
a matrix is the sum of the leading diagonal of that matrix. If we express
the posterior error covariance P+

k in terms of Kk, then we can take the
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derivative of the trace of this expression with respect to Kk. To find the Kk

that minimizes the trace, we set the derivative to zero and solve for Kk [50].

1. We express the posterior error covariance P+
k in terms of Kk, using

(4.23), (4.24), and (4.39),

P+
k = E[(e+

k )(e+
k )T ]

= E[(xk − x̂−k −K(zk −Hx̂−k ))(xk − x̂−k −K(zk −Hx̂−k ))T ].

2. We take the indicated expectations, where we also use the measure-
ment model from (4.14), the definition for the prior error covariance
from (4.20), and the zero mean assumption of the system noise,

P+
k = E[(xk − x̂−k −Kk(Hxk + vk −Hx̂−k ))

(xk − x̂−k −Kk(Hxk + vk −Hx̂−k ))T ]
= E[((I −KkH)(xk − x̂−k ) + (Kkvk))

((I −KkH)(xk − x̂−k ) + (Kkvk))
T ]

= (I −KkH)E[(xk − x̂−k )(xk − x̂−k )T ](I −KkH)T

+KkE[vkvTk ]KT
k + 2(I −KkH)E[(xk − x−k )vTk ]KT

k

= (I −KkH)P−k (I −KkH)T +KkRkK
T
k .

3. We compute the derivative of the trace of this result, where we use
that ∂tr(ABAT )/∂A = 2AB,

∂tr(P+
k )

∂Kk
=

∂

∂Kk
[tr((I −KkH)P−k (I −KkH)T +KkRkK

T
k )]

=
∂

∂Kk
[tr((I −KkH)P−k (I −KkH)T ) + tr(KkRkK

T
k )]

= −2(I −KkH)P−k H
T + 2KkRk.

= −2P−k H
T + 2Kk(HP−k H

T +Rk),

4. We set the derivate of the trace to zero and solve for Kk,

Kk = P−k H
T (HP−k H

T +Rk)
−1
.

The Kk that we have derived in this way is exactly the Kk that we derived
for the KF. We have hereby proved that this K minimizes the posterior error
covariance.
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4.9 Additional System Dependencies

So far we have only looked at systems of which the state depends only on
the previous state and on system noise. Sometimes however the evolution of
the state depends on extra, possibly random, variables. Drift and external
input [29, 21, 51] are two common types of additional influences on the state
of the system.

Drift. When the state of the system at every time step changes with a
certain constant the system state moves away from the ideal state trajectory
as modeled by the transition matrix A. We call this constant influence drift.
Drift causes devices that make relative measurements to have an increasing
measure error. The influence of drift does not have to be the same at every
time step. Noise can influence the amount of drift.

External Input. External input is input that influences the evolution
of the state, but that is not part of the state. An example of external
input is control input. In control applications there often is control input
that changes the state of the system. In robot navigation applications a
robot sends control commands to its guidance system to drive over a certain
distance at a certain speed. These commands make that the robot changes
its location. We should therefore include them in the model of the evolution
of the system state.

External input does not have to be deterministic; it can be noisy. In
the robot navigation case, when a robot sends control commands to its
guidance system, there is no guarantee that the wheels will exactly execute
these commands. In fact, due to for example slippage and irregularities of
the surface, the robot can easily execute the commands slightly different
from expected. By monitoring the actual execution of the actions by means
of relative position measurements, we can find out more precisely what the
wheels actually have done. However, noise in these measurements can still
corrupt the information.

Either way, if we can somehow estimate the uncertainty in the control
commands, we can include this uncertainty in our system model to make it
more adequate.

4.9.1 System Model Revisited

We can adjust our system model such that we can also include extra input
like drift and external input influences. We revise the system model to
describe the evolution of a system state xk based on previous state xk−1,
extra input uk−1 ∈ Rl, and system noise wk−1,

xk = Axk−1 +Buk−1 + wk−1. (4.55)
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In this system equation the l×n matrix B determines what the contribution
of the extra input uk−1 is to the state xk at time k. We will assume that the
extra input is Gaussian distributed, and independent of the other random
variables,

uk ∼ N(ûk, Uk). (4.56)

4.9.2 Beliefs Revisited

We also revise the belief from (4.10). It is no longer the conditional prob-
ability of system state xk given only the measurements z. The conditional
probability now also takes into account the extra inputs u.

The prior belief is the conditional probability of the system state xk at
time k, given all measurements and external inputs up to and including time
k − 1. This has consequences for the computation of the prior belief, since
the extra input changes the system state.

The posterior state is now also conditioned on all the extra inputs, but
this has no consequences for the computation of the posterior belief, since
we assume that the extra input is independent of the measurements.

4.9.3 KF Prediction Revisited

We want to update the KF prediction equations that we derived in Sec-
tion 4.6.1 to compute the new prior belief of a system governed with the
new system equation. We expect that since the extra input simply adds a
quantity to the new state, the new prior state estimate and error covariance
equations will simply get an additional term that takes this extra input into
account.

Revised Prior State Estimate. We derive the equation for the prior
state estimate x̂−k as we did in Section 4.6.1 by taking the expectation of
the system state xk conditioned on all the measurements and extra inputs
up to and including time k − 1,

x̂−k = E[xk|z1, . . . , zk−1, u1, . . . , uk−1]
= E[Axk−1 +Buk−1 + wk−1|z1, . . . , zk−1, u1, . . . , uk−1]
= AE[xk−1|z1, . . . , zk−1, u1, . . . , uk−1]

+BE[uk−1|z1, . . . , zk−1, u1, . . . , uk−1]
+ E[wk−1|z1, . . . , zk−1, u1, . . . , uk−1]

= AE[xk−1|z1, . . . , zk−1, u1, . . . , uk−1]
+BE[uk−1|u1, . . . , uk−1] + E[wk−1]

= Ax̂+
k−1 +Bûk−1, (4.57)
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where ûk−1 is the best estimate of the extra input from (4.56), and where we
used that the extra input is independent of the measurements and system
noise.

We notice that indeed the addition of extra input uk−1 simply adds
an extra term to the expression for the prior state estimate, where B is
the matrix that determines how the extra input contributes to the state
estimate.

Revised Prior Error Covariance. We also compute the uncertainty in
the prior state estimate as we did earlier in Section 4.6.1. We first compute
the error in the prior state estimate,

e−k = xk − x̂−k
= Axk−1 +Buk−1 + wk−1 −Ax̂+

k−1 −Bûk−1

= A(xk−1 − x̂+
k−1) +B(uk−1 − ûk−1) + wk−1

= Ae+
k−1 +Beu,k−1 + wk−1, (4.58)

where eu,k−1 = uk−1− ûk−1 is the error in the extra input estimate. We now
substitute the prior error into the estimate e−k in the definition of the prior
error covariance, and obtain

P−k = E[(e−k )(e−k )T ]

= E[(Ae+
k−1 +Beu,k−1 + wk−1)(Ae+

k−1 +Beu,k−1 + wk−1)T ]

= AE[(e+
k−1)(e+

k−1)T ]AT +BE[(eu,k−1)(eu,k−1)T ]BT

+ E[(wk−1)(wk−1)T ]

= AP+
k−1A

T +BUk−1B
T +Qk−1, (4.59)

where Uk−1 is the covariance of the extra input from (4.56). The last equa-
tion was obtained by exploiting the fact that E[e+

k−1eu,k−1] = E[e+
k−1wk−1] =

E[eu,k−1wk−1] = E[wk−1e
+
k−1] = 0.

Again, we notice that addition of independent extra input to the system
simply adds an extra term, in this case the term BUk−1B

T . Notice also that
if there is no uncertainty in the extra input, that is, Uk−1 = 0, then the term
Beu,k−1 in (4.58), and the term BUk−1B

T in (4.59) will be zero, resulting
in the same error covariance as derived in the case of no extra input.

With the prediction update equations (4.57) and (4.59) we have extended
our basic KF to systems that have extra input as (4.56) and can be modeled
according to system equation (4.55). We notice that making the system
state depend on extra Gaussian distributed, independent variables, results
in simple extensions of the prior state and error covariance equations.
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4.10 Summary

The Kalman Filter (KF) is a recursive data processing algorithm that has
succesfully been used in a wide range of applications from prices of traded
goods prediction, to spacecraft control. The KF estimates the state of a
noisy system using noisy measurements. More precisely, it calculates the
conditional probability distribution over the space of states given measure-
ments, the belief. It does this in a prediction-correction fashion, where it
first predicts the state of the system based on system dynamics and then
corrects its prediction based on measurements.

The KF makes a number of assumptions on the system, measurements
and different noises that are involved in the estimation problem. The KF
assumes that the system and measurements are adequately modeled by a
linear dynamic system, and that noises are independent, white, Gaussian
and with zero-mean. Moreover, the KF assumes that the initial state of the
system is also independent and Gaussian distributed.

The KF calculates the belief by performing two alternating steps. In
the prediction step the KF calculates the prior belief. This belief consists
of the prior state estimate and the prior error covariance, which describes
the uncertainty in the state estimate. Given the model and the last state
estimate the prediction step predicts the most likely current state of the
system after a time step.

The KF applies the correction step when it has access to a measurement.
It uses the measurement to form the posterior belief. The KF computes the
measurement innovation as the difference between the true measurement and
a measurement prediction. It uses the Kalman Gain to determine to what
extent the measurement innovation should be incorporated into the state
estimate. We can proof that the KF incorporates measurements in such a
way that the posterior error in the state estimate is minimized, which makes
the KF a minimum variance estimator.

We can extend the basic KF equations to systems of which the state is
influenced by drift and external inputs. We can use the revised equations
in control applications, like for example when we want to model navigating
robots.



Chapter 5

Kalman Filter Extensions

In Chapter 4 we described the basic Kalman Filter that addresses the prob-
lem of estimating the state of a noisy system that can be described by a
linear system and a linear measurement model. Since the invention of the
KF, many extensions relaxing some of the assumptions that the basic KF
poses on the system and measurements have been developed. In this chapter
we will discuss how the linear model assumption can be relaxed. We will
discuss how to generalize the KF to estimate the state of a problem that is
adequately modeled by nonlinear instead of linear system and measurement
equations.

In Section 5.1 we define how we model nonlinear dynamic systems. In
Section 5.2 we derive and discuss the Perturbation KF that estimates the
state of nonlinear problems using linearization. The linearization technique
of the Perturbation KF has some disadvantages. In Section 5.3 we discuss
the Extended KF, that takes away one of the disadvantages, and in Section
5.4 we discuss the Iterated Extended KF, that improves the performance of
the Extended KF. In Section 5.5 we generalize the Extended KF equations
to system and measurement models with any number of parameters. We
end the chapter with some references to related work in Section 5.6.

5.1 Nonlinear Dynamic Systems

Many dynamic system and sensor models are not completely linear, but not
far from it either. This means that the functions that describe the system
state and measurements are nonlinear, but approximately linear for small
differences in the values of the state variables. Instead of assuming a linear
dynamic system, we now consider a nonlinear dynamic system, consisting of
a nonlinear system and a nonlinear measurement model.

Nonlinear System Model. The system of which we want to estimate
the state is no longer governed by the linear equation from (4.13), but by a
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nonlinear equation. We have that

xk = f(xk−1) + wk−1, (5.1)

where f(·) is a nonlinear system function relating the state of the previous
time step to the current state, and where wk−1 represents the noise corrupt-
ing the system. The noise is assumed to be independent, white, zero-mean,
and Gaussian distributed.

Nonlinear Measurement Model. We also no longer assume that the
measurements are governed by a linear equation as in (4.14). Instead, we
have that

zk = h(xk) + vk, (5.2)

where h(·) is a nonlinear measurement function relating the state of the
system to a measurement, and where vk is the noise corrupting the meas-
urement. This noise is also assumed to be independent, white, zero-mean,
and Gaussian distributed.

5.2 Perturbation Kalman Filter

Linear models have many advantages. They are easy to compute and to
understand. They give predictable outputs, in time and over iterations.
Besides this, linear theory is complete and developed, and linear differential
equations are easy to solve [52].

In this section we will derive the Linearized or Perturbation Kalman Fil-
ter (PKF) [29, 21] that estimates the state of nonlinear dynamic systems
by linearizing its nonlinearities. Linearization techniques simulate linear
behavior locally at a point or along a small interval [52]. The results of
this simulation are then extrapolated to the general domain. The extrapol-
ation depends on the direction of the linearity, that is, the direction of the
derivatives at a point on a surface. Linearization around a point x means
approximating the function at a very small distance from x.

In Section 5.2.1 we will first look at the concepts involved in linearization,
after which we linearize the nonlinear system and measurement functions in
Section 5.2.2. In Section 5.2.3 we summarize the equations of the PKF, and
in Section 5.2.4 we discuss the strengths and weaknesses of the PKF.

5.2.1 Linearization Concepts

In short, to linearize the nonlinear system and measurement functions, we
define a nominal trajectory and linearize the perturbations that occur around
that nominal trajectory using a first order Taylor series approximation.
That is, we assume that we can decompose the nonlinear functions into two
components: a known nominal component and an unknown perturbation
component. Let us go into a bit more detail on these linearization concepts.
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Trajectories. A trajectory [21] is a particular solution of a noisy system.
For every time step the trajectory contains an instantiation of the random
variables involved. We describe the trajectory by a sequence of vectors. A
nominal or reference trajectory is a trajectory in which the random variables
take on their expected values.

Perturbations. The true values of the random variables will not follow
the nominal trajectory exactly. There will be small differences between
the nominal and true trajectory due to the presence of random noise like
system, measurement and initial state noise. We call these small differences
perturbations [21].

Taylor Series. If the function that we want to linearize is continuously
differentiable infinitely many times, then we can represent the influence of
perturbations on the trajectory by a Taylor series expansion about the nom-
inal trajectory [21]. In general, the Taylor series expansion of a function f
around a point x is defined by

f(x+ ∆x) = f(x) + f (1)(x)∆x+
f (2)(x)

2!
∆x+ . . .+

f (n)(x)
n!

∆x+ . . . ,

(5.3)

where f (i) is the ith derivative of f with respect to x, evaluated at the
linearization point x, and where ∆x is the perturbation. To linearize a
nonlinear function we simply drop the Taylor series expansion terms with
derivative order higher than one.

There are some points that need attention when linearizing functions
in this way. If the first derivative of the nonlinear function is infinitely
large or undefined at the point where we want to linearize, then we can not
linearize at that point. Moreover, the perturbations have to be relatively
small compared to the higher-order terms in order to result in meaningful
linearizations. We can determine the size of the perturbations from the
variances of the involved variables. If the variances are small, then we can
obtain good approximations by ignoring the higher order terms [21].

5.2.2 Nominal Trajectory Linearization

With the concepts involved in linearization we can perform a linearization
of the nonlinear system and measurement model from equations (5.1) and
(5.2) around a nominal trajectory.

Linearized System Model. We assume that we can decompose the non-
linear equation for the system state xk from (5.1) into a linear combination
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of a nominal component xnomk−1 and a perturbation component ∆xk−1,

xk = xnomk−1 + ∆xk−1. (5.4)

The nominal state xnomk−1 is part of the nominal trajectory of the system
states. We generate this trajectory by recursively computing the nominal
states for all k, where we take xnom0 as initial state,

xnomk = f(xnomk−1 ). (5.5)

As mentioned, the true trajectory of the system state differs from the
nominal trajectory. The state perturbation component in (5.4) models the
difference between the true and nominal state,

∆xk = xk − xnomk

= f(xk−1) + wk−1 − f(xnomk−1 ), (5.6)

where we substituted (5.1) and (5.5) into the second expression. Notice that
this expression for the perturbation is nonlinear. In order to linearize it, we
expand the system function f(x) with a Taylor series expansion around the
nominal state xnomk−1 ,

f(xk−1) = f(xnomk−1 + ∆xk−1)

= f(xnomk−1 ) +
∂f(x)
∂x

∣∣∣∣
x=xnomk−1

∆xk−1 + h.o.t. (5.7)

where we used equations (5.3) and (5.4), and where h.o.t. is short for higher-
order terms, which are the terms in the expansion with derivative order
higher than one. We substitute this expansion into the definition of the
state perturbations (5.6) to obtain a linear expression for the perturbation
∆xk at time k in terms of the perturbation in the state one step earlier
∆xk−1,

∆xk = f(xk−1) + wk−1 − f(xnomk−1 )

= f(xnomk−1 ) +
∂f(x)
∂x

∣∣∣∣
x=xnomk−1

∆xk−1 + h.o.t. + wk−1 − f(xnomk−1 )

=
∂f(x)
∂x

∣∣∣∣
x=xnomk−1

∆xk−1 + h.o.t. + wk−1

≈ Ak∆xk−1 + wk−1, (5.8)

where Ak is the n × n matrix of partial derivatives of f(x) with respect to
x, evaluated at the point of linearization xnomk−1 ,

Ak =
∂f(x)
∂x

∣∣∣∣
x=xnomk−1

, (5.9)
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and where wk−1 is the system noise. We call a matrix with partial derivatives
a Jacobian matrix. The Jacobian matrix Ak indicates how the different
output variables of f(x) change when the variables of state x change. Since
the system function is nonlinear this change can be different from step to
step and therefore Ak has to be recomputed for every nominal state.

Notice that we linearized the perturbation from equation (5.6) by drop-
ping the higher order terms of the Taylor series expansion in equation (5.8).
Recall that we can only do this meaningfully when the perturbations of the
nominal state trajectory are small enough for the higher order terms to be
negligible.

Linearized Measurement Model. In the same way as we linearized
the system model we can linearize the measurement model from (5.2). We
assume that we can express the measurement model as a linear combination
of a nominal measurement znomk and a measurement perturbation ∆zk,

zk = znomk + ∆zk, (5.10)

where we define the nominal measurement trajectory as sequence of nominal
measurements znomk for every k as

znomk = h(xnomk ), (5.11)

That is, the nominal measurement trajectory is the sequence of measure-
ments that are ideally made when the system follows the nominal state
trajectory. With this definition and the measurement model from equation
(5.2) we find the perturbation in the measurement trajectory as

∆zk = zk − znomk

= h(xk) + vk − h(xnomk ). (5.12)

To linearize this perturbation equation, we first expand the nonlinear meas-
urement function h(x) with a Taylor series expansion around the nominal
state xnomk ,

h(xk) = h(xnomk + ∆xk)

= h(xnomk ) +
∂h(x)
∂x

∣∣∣∣
x=xnomk

∆xk + h.o.t. (5.13)

We substitute this into equation (5.12) and drop the higher order terms to
express the measurement perturbation as a linear combination of the system
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perturbation and measurement noise,

∆zk = zk − znomk

= h(xk) + vk − h(xnomk )

= h(xnomk ) +
∂h(x)
∂x

∣∣∣∣
x=xnomk

∆xk + h.o.t. + vk − h(xnomk )

=
∂h(x)
∂x

∣∣∣∣
x=xnomk

∆xk + h.o.t. + vk

≈ Hk∆xk + vk, (5.14)

where

Hk =
∂h(x)
∂x

∣∣∣∣
x=xnomk

. (5.15)

The matrix Hk is the Jacobian matrix that determines what the contribution
of the state perturbation is to the current measurement. Matrix Hk contains
the partial derivatives of the measurement function h(·) with respect to x
evaluated at the nominal state xnomk . Notice that we do not need to know
the true measurement zk to compute the measurement perturbation.

For two reasons there will be a difference between a true measurement
zk and the nominal measurement znomk at a time k. The true measurements
are corrupted by measurement noise vk and due to differences between a
true state and the nominal state at a time step, the measurement prediction
h(xk) does not have to equal h(xnomk ). Besides this, the perturbation in the
measurement ∆zk differs from the zk − znomk , because of the approximation
when we drop the higher order terms.

5.2.3 Algorithm

The PKF estimates the state of a nonlinear system by combining a nominal
state with an estimate of the state perturbation ∆̂xk. It assumes that we
can model the system and measurement equations by

xk = xnomk−1 + ∆xk−1

zk = znomk + ∆zk,

where the nominal state and measurement trajectories are defined by equa-
tions (5.5) and (5.11), and where the system perturbation ∆xk−1 and meas-
urement perturbation ∆zk are approximated by

∆xk ≈ Ak∆xk−1 + wk−1

∆zk ≈ Hk∆xk + vk.
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Initialization. The PKF is initialized with the perturbation estimate ∆̂x
+

0

and uncertainty P+
0 at time step 0. This initial perturbation estimate will

in general be zero.

Prediction. At a new time step, the PKF propagates the perturbation
estimate and uncertainty from the last time step to the current using the
prediction equations

∆̂x
−
k = Ak∆̂x

+

k−1 (5.16)

P−k = AkP
+
k−1A

T
k +Qk−1, (5.17)

where Ak is the Jacobian matrix with partial derivatives of the system func-
tion f(x) with respect to the state x, evaluated at the nominal state xnomk−1 ,

Ak =
∂f(x)
∂x

∣∣∣∣
x=xnomk−1

. (5.18)

Correction. When a new measurement zk arrives, the PKF incorporates
this measurement into the perturbation estimate using the correction equa-
tions

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (5.19)

∆̂x
+

k = ∆̂x
−
k +Kk(zk − h(xnomk )−Hk∆̂x

−
k ) (5.20)

P+
k = (I −KkHk)P−k , (5.21)

where Hk is the Jacobian matrix with partial derivatives of the measurement
function h(x) with respect to the state x, evaluated at the nominal xnomk ,

Hk =
∂h(x)
∂x

∣∣∣∣
x=xnomk

. (5.22)

Notice that instead of full true and predicted measurements, the PKF incor-
porates true and predicted measurement perturbations into the state per-
turbation estimates.

Full State Estimate. Given the optimal prior or posterior state perturb-
ation estimate, we find the optimal full prior or posterior state estimate by
combining the prior or posterior perturbation estimate with the nominal
state as respectively

x̂−k = xnomk + ∆̂x
−
k , (5.23)

and

x̂+
k = xnomk + ∆̂x

+

k . (5.24)
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5.2.4 Remarks

Linearization around a nominal trajectory as in the PKF can work well if
the actual trajectory of xk is close to the nominal trajectory xnomk . The
higher-order terms in the Taylor series expansion can then be ignored and
then this method linearizes the nonlinear problem adequately.

Using a nominal trajectory implies that the trajectory of the states is
more or less known in advance. This has as computational advantage that
the Jacobian matrices Ak and Hk can be computed off-line, before the state
estimation begins. They do not depend on the state estimates. This can be
an advantage for real-time applications.

Also, since the Jacobians are not coupled to the state estimates, the
Kalman gain Kk and the error covariances P−k and P+

k can be computed
off-line. This allows for performance analyses without any real or simulated
states and measurements.

However, if the state perturbations are not small, then the PKF can
make large estimation errors. In fact, in practice the deviation of the actual
trajectory from the nominal trajectory often increases over time [21]. The
reason for this is that the nominal trajectory is made without any knowledge
of the state estimates. If the true state of the system at a certain point in
time starts following a significantly different trajectory than the nominal
trajectory, then the following state estimates will have large errors, since
the PKF continues using the nominal trajectory. The perturbations can
become too large for the PKF to work well.

5.3 Extended Kalman Filter

The main problem of the PKF lies in the fact that it uses the same nom-
inal trajectory throughout the estimation process. The nominal trajectory
does not change when state estimates indicate that there might be a large
difference between the nominal and true states. The nominal trajectory is
static. To prevent the error in the state estimates to become increasingly
large, we can make the trajectory about which the perturbations are lin-
earized dynamic. This is exactly the idea of the Extended Kalman Filter
(EKF) [29, 21], originally called Kalman-Schmidt Filter [29]. The nominal
trajectory is updated with the most recent state estimates.

5.3.1 Estimated Trajectory Linearization

Instead of evaluating the Taylor series expansions of the system and meas-
urement functions at the nominal trajectories that are made independent
of the measurements and state estimates, we can evaluate them at traject-
ories that are updated with the latest state estimates. If the system state
is sufficiently observable, that is, if the measurements provide information
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about the state at a high enough frequency, then the deviations between the
estimated trajectory and the actual trajectory will stay small [21].

A new estimate of the state of the system is a better reference for the
true state than the independently generated nominal state. We can in-
corporate the better state estimate in the perturbation estimation process.
The assumption that the difference between the nominal trajectory and the
true trajectory stays small enough to make linear perturbation estimates is
hereby stronger justified.

Nominal Trajectory Update. Assume that we have incorporated the
last measurement zk−1 at time k − 1 into the state estimate, obtaining the
posterior state estimate x̂+

k−1. Instead of linearizing about the pre-computed
nominal state xnomk−1 at the next time step, we want to linearize about the
new posterior state estimate. This redefinition of the nominal trajectory
has consequences for the computation of the prediction and correction of
the estimates.

When we have a new state estimate x̂+
k−1, we recompute the nominal

trajectory starting from time step k − 1, with as initial condition the new
state estimate x̂+

k−1, instead of xnomk−1 ,

xnomk−1 = x̂+
k−1 (5.25)

xnomk = f(xnomk−1 ). (5.26)

Having updated the nominal trajectory with the latest state estimate, the
best estimate of the state perturbation ∆̂x

+

k−1 at step k − 1 is zero, since
the best estimate of the true state xk−1 is our latest state estimate x̂+

k−1,

∆̂x
+

k−1 = x̂k−1 − xnomk−1 = 0. (5.27)

Note that the uncertainty in this estimate of the perturbation does not have
to be zero.

Prediction. At time step k we want to predict the new perturbation given
the last perturbation estimate and the updated nominal trajectory. Accord-
ing to the prediction equation of the PKF in (5.16), we propagate the per-
turbation by multiplying the last perturbation estimate with the Jacobian
Ak,

∆̂x
−
k = Ak∆̂x

+

k−1

= 0. (5.28)

The propagated perturbation equals zero, since according to equation (5.27),
right after updating the nominal trajectory, the best estimate of the state
perturbation is zero. Notice that the Jacobian matrix Ak is evaluated at
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the most recent state estimate; it is evaluated at the updated nominal state
xnomk−1 , which according to equation (5.25) is the posterior state estimate
x̂+
k−1.

According to equation (5.23), the best estimate of the full state is the
sum of the predicted perturbation ∆̂x

−
k and the updated nominal state xnomk .

Using equations (5.26) and (5.28), we have that

x̂−k = xnomk + ∆̂x
−
k

= f(x̂+
k−1). (5.29)

We see that we can use the original nonlinear system function f(·) instead
of the linearized perturbation to estimate the prior state estimate x̂−k .

Correction. The nominal measurement trajectory depends on the nom-
inal state trajectory. Since we updated the latter with the latest state es-
timate, we can use it to update the nominal measurement trajectory. The
measurement trajectory is computed in the same way as before, only with
the updated state trajectory as input. For all k starting from the current
time,

znomk = h(xnomk ).

With this and with (5.28), we rewrite the correction equation of the PKF
from equation (5.20) into

∆̂x
+

k = ∆̂x
−
k +Kk(zk − znomk −Hk∆̂x

−
k )

= Kk(zk − h(xnomk ))
= Kk(zk − h(x̂−k )). (5.30)

Notice that the Jacobian matrix Hk and measurement function h(·) are
evaluated at the nominal state xnomk . According to (5.26) and (5.25) this
equals f(x̂+

k−1), which according to (5.29) equals the prior state estimate
x̂−k , which is the latest state estimate.

According to equation (5.24), we obtain the best full posterior state es-
timate by summing the updated nominal state with the computed posterior
state perturbation. Using (5.26), (5.25), and (5.30), we obtain

x̂+
k = xnomk + ∆̂x

+

k

= f(x̂+
k−1) +Kk(zk − h(x̂−k ))

= x̂−k +Kk(zk − h(x̂−k )). (5.31)

We see that we do not need to explicitly compute the state perturbation
∆̂x

+

k to compute the posterior state estimate.
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With this result we have found a way to compute both prior and posterior
state estimates, without explicitly computing the state and measurement
perturbations, while incorporating the latest state estimates in the traject-
ories.

5.3.2 Algorithm

The EKF uses the equations that we have derived to estimate the state of
nonlinear systems with nonlinear measurements. The structure of the EKF
closely resembles the structure of the LKF from Section 4.7.

Initialization. The EKF is initialized with the posterior state estimate
x̂+

0 and uncertainty P+
0 at time step 0.

Prediction. At every time step, the EKF propagates the state and un-
certainty of the system at the previous time step to the current using the
prediction equations

x̂−k = f(x̂+
k−1) (5.32)

P−k = AkPk−1A
T
k +Qk−1, (5.33)

where the Jacobian matrix Ak contains the partial derivatives of system
function f(·) with respect to state x, evaluated at the posterior state estim-
ate x̂+

k−1 of the last time step,

Ak =
∂f(x)
∂x

∣∣∣∣
x=x̂+

k−1

. (5.34)

Correction. The EKF corrects the prior state estimate with a full meas-
urement zk by means of the correction equations

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1
(5.35)

x̂+
k = x̂−k +Kk(zk − h(x̂−k )) (5.36)

P+
k = (I −KkHk)P−k , (5.37)

where the Jacobian matrix Hk contains the partial derivatives of the meas-
urement function h(·) with respect to the state x, evaluated at the prior
state estimate x̂−k ,

Hk =
∂h(x)
∂x

∣∣∣∣
x=x̂−k

. (5.38)
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5.3.3 Remarks

The Jacobian matrices Ak and Hk are evaluated at the most recent state
estimates. Since the state estimates are not known in advance, the Jacobians
can not be computed off-line as is the case with the PKF. In the EKF case,
the Jacobians have to be computed on-line, since they depend on the state
estimates. This results in higher computational costs.

Although the computational costs are higher, the state estimates will
be better than the estimates from the PKF, since the nominal trajectory
is updated on-line with the latest state estimates. This allows the EKF
to make better nominal trajectories, making deviations from the nominal
trajectory smaller. This allows the EKF to more accurately predict and
correct its state estimates.

The propagation and update equations for updating the error covariance
depend on the state estimates. Thus, the covariance and gain matrices can
not be analyzed without knowledge about the state estimates, and thus true
measurements. In the LKF and PKF we could in fact analyze error and
Kalman gain behavior without having state estimates.

The EKF has been shown to be successful in many practical nonlinear
applications [29, 21]. It can in particular be used in applications where the
model of the system is well described by a linear model, but in which there
are some uncertain parameters in the system and measurement models. By
treating these parameters as additional state variables the problem becomes
nonlinear; the parameters then have to be estimated on-line.

5.4 Iterated Extended Kalman Filter

The EKF linearizes the nonlinear system and measurement function, rede-
fining the nominal trajectories using the latest state estimates once. When
there are significant nonlinearities, it can be beneficial to iterate the nominal
trajectory redefinition a number of times using the new nominal trajectory.
The idea of the Iterated Extended Kalman Filter (IEKF) [29] is to use all
information in a measurement by repeatedly adjusting the nominal state
trajectory.

We can see that this can be beneficial by looking at how the EKF incor-
porates a measurement. If we have a measurement that we want to incor-
porate in a state estimate, we should use the best state estimate available.
At a time k when there is a new measurement available, the best estimate so
far will be the prior state estimate x̂−k at that time. However, at the point
that the EKF has computed the posterior estimate, the prior state estimate
is no longer the best estimate at time k. Instead, the new posterior estimate
is the best estimate of the state at time k. Since we should use the best
state estimate to incorporate the measurement, we should use this posterior
estimate instead of the prior estimate.
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5.4.1 Repeated Estimated Trajectory Update

The IEKF repeatedly redefines the nominal trajectory to find the best state
estimate to use for including a measurement. It does this by computing the
Kalman Gain Kk and an intermediate posterior state estimate x̂ik, where
i is the iteration number. Starting from x̂0

k = x̂−k , the IEKF repeatedly
performs the calculations

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1

x̂i+1
k = x̂−k +Kk(zk − h(x̂ik)−Hk(x̂−k − x̂

i
k)). (5.39)

In this, the Jacobian matrix Hk is evaluated at the most recent intermediate
state estimate x̂i. After a fixed number of iterations or when the intermedi-
ate state estimate x̂ik does not differ with more than a certain threshold from
x̂i−1
k , the IEKF sets the posterior state estimate to x̂ik and it computes the

posterior uncertainty P+
k in that state estimate using the latest evaluation

of Kk and Hk.

5.4.2 Remarks

Notice that although the IEKF computes intermediate state estimates, it
does not compute intermediate state estimate uncertainties. It only com-
putes the uncertainty in the state estimate once it has found the most ac-
curate intermediate state estimate.

Although the computations involved in the IEKF are larger than in the
EKF, the posterior state estimates will be better because of the re-evaluation
of the measurement function h and the Jacobian Hk. This will again improve
future state estimates, because the nominal trajectories will be better [29].

5.5 Additional Dependencies Revisited

As we discussed in Section 4.9 the system model can depend on more than
just the last state and system noise. Additional dependencies like drift and
external input commonly appear in practical applications. In the previous
chapter we derived equations for the LKF that we can apply in these situ-
ations. In this section we discuss how we can generalize the EKF equations.
We will do this for the EKF, since it is generally more applicable than the
PKF, and since the extension from generalized EKF to generalized IEKF is
straightforward.

5.5.1 Dynamic Nonlinear Systems Revisited

Generalized Nonlinear System Model. Assume that we have a system
model that depends on system noise wk−1, and a system function f that
depends on n−1 parameters ui,k. Instead of treating the system noise wk−1
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as a separate term in the system model, we can mathematically include it
into the description of the system function f . We then obtain the generalized
system model

xk = f(u1,k−1, . . . , un−1,k−1) + wk−1 (5.40)
= f∗(u1,k−1, . . . , un−1,k−1, un,k−1) (5.41)

where we assume that the n parameters ui are Gaussian distributed with
mean ûi,k and covariance Ui,k,

ui ∼ N(ûi,k, Ui,k), (5.42)

for 1 ≤ i ≤ n, and where we assume that the parameter vectors are inde-
pendent of one another.

We can include the noise in the system function, since for every variable
in the result of f there is a corresponding variable in the system noise vector
wk−1. This noise variable can thus just as well be added to the corresponding
result variable inside the function f . That is exactly what f∗ does. In the
following we denote f when we refer to f∗.

Generalized Nonlinear Measurement Model. In the same way, as-
sume that we have a measurement model that depends on measurement
noise vk, and a measurement function h that depends on m− 1 parameters
yj,k. As with the system noise and the system function, we can include
the measurement noise in the measurement function. We then obtain the
generalized measurement model

zk = h(y1,k, . . . , ym−1,k) + vk−1 (5.43)
= h(y1,k, . . . , ym−1,k, ym,k), (5.44)

where we again assume that the m parameters yj are Gaussian distributed
with mean ŷj,k and covariance Yj,k,

yj ∼ N(ŷj,k, Yj,k), (5.45)

for 1 ≤ j ≤ m, and where we assume that the vectors are independent of
one another.

5.5.2 Generalized EKF Prediction

Realize that the best prediction x̂−k of the state is given by the system
function f(·, . . . , ·) with as parameters the best estimates of the parameters
ui,k. The best estimates of these parameters are the means ûi,k of the
Gaussians describing their distributions. The uncertainty P−k in the best
prediction depends on the uncertainty in the parameters. The Jacobian
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matrices with the derivatives of the system function with respect to the
parameters determine the contribution of each of the parameters to the
uncertainty of the state estimate. This leads us to form the generalized
EKF prediction equations as

x̂−k = f(û1,k−1, . . . , ûn,k−1) (5.46)

P−k = Au1,kU1,k−1A
T
u1,k + . . .+Aun,kUn,k−1A

T
un,k (5.47)

=
n∑
i=1

Aui,kUi,k−1A
T
ui,k

, (5.48)

whereAui,k is the Jacobian matrix with partial derivatives of system function
f(·, . . . , ·) with respect to ui, evaluated at u1 = û1,k−1, . . . , un = ûn,k−1, for
1 ≤ i ≤ n,

Aui,k =
∂f(u1, · · · , un)

∂ui

∣∣∣∣
u1=û1,k−1,...,un=ûn,k−1

. (5.49)

Commonly the system function f will depend on the last posterior state
estimate x̂+

k−1, though this does not have to be the case.

5.5.3 Generalized EKF Correction

To correct a prediction, the EKF predicts what the true measurement will
be. Realize that estimating the measurement ẑk is in fact a different estim-
ation process without correction and not depending on previous measure-
ments. Therefore, we predict the best measurement estimate similar to the
way we predicted the best state estimate.

The best estimate of the measurement ẑk is given by the measurement
function h(·, . . . , ·) with as parameters yi,k the best estimates of the paramet-
ers, which are the means of their distributions ŷi,k. The uncertainty in this
measurement estimate depends on the uncertainties in the parameters. The
Jacobian matrices with the derivatives of the measurement function with
respect to the parameters determine how much uncertainty of each para-
meter contributes to the uncertainty in the measurement estimate. This
leads us to equations for the estimated, or predicted, measurement ẑk with
uncertainty Zk,

ẑk = h(ŷ1,k−1, . . . , ŷm,k−1) (5.50)

Zk = Hy1,kY1,kH
T
y1,k + · · ·+Hym,kYm,kH

T
ym,k (5.51)

=
m∑
i=1

Hyi,kYi,kH
T
yi,k

, (5.52)

where Hyi,k is the Jacobian matrix with partial derivatives of the measure-
ment function h(·, . . . , ·) with respect to yi, evaluated at y1 = ŷ1,k−1, . . . , ym =
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ŷm,k−1, for 1 ≤ i ≤ m,

Hyi,k =
∂h(y1, · · · , ym)

∂yi

∣∣∣∣
y1=ŷ1,k−1,...,ym=ŷm,k−1

. (5.53)

The correction of the prediction of the states uses the Kalman gain to
determine to which extend the measurement residual zk − ẑk has to be in-
cluded in the new state estimate. The Kalman gain weights the uncertainty
in the state estimate against the uncertainty in the measurement residual. It
hereby uses the Jacobian with partial derivatives of the measurement func-
tion with respect to x. In order to use the measurement model to correct
the state estimate, the measurement model must be related to the system
model. Thus, the state xk must always be a parameter of the measurement
function. Assume that the parameter yi,k of the measurement function that
corresponds to the state xk is i = j. We then form the generalized equations
for the Kalman gain and the posterior state estimate and uncertainty as

Kk = P−k H
T
yj ,k

(Zk)−1 (5.54)

x̂+
k = x̂−k +Kk(zk − ẑk) (5.55)

P+
k = (I −KkHyj ,k)P

−
k . (5.56)

5.6 Related Work

Besides the KF extensions that we have discussed so far in this chapter,
alternative extensions have been proposed throughout the years. Here we
mention the key ideas of three of these shortly.

The Unscented Kalman Filter [47] uses an unscented transformation to
perform state estimation of nonlinear systems without linearizing the sys-
tem and measurement models. This transformation uses a set of carefully
deterministically chosen weighted samples that parameterize the mean and
covariance of the belief. The system function is applied to each sample,
which results in a group of transformed points. The mean and covariance of
this group of points are the propagated mean and covariance. Since there
is no linearization involved in the propagation of the mean and covariance,
the Jacobians of the system and measurement model do not have to be
calculated. This makes the Unscented Kalman Filter practically attractive.

Particle filters [20] are an alternative technique for state estimation.
Particle Filters represent the complete posterior distribution of the states.
Therefore they can deal with any nonlinearities and noise distributions.
Particle filters have been combined with the Unscented Kalman Filter in
the Unscented Particle Filter [46].

The Ensemble Kalman Filter [17] allows for states with huge amounts
of variables. Due to the computations involved in propagating the error
covariance in the KF, the dimension of the states is restricted to no more
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than a few thousand state variables. In for example the prediction of the
state of an ocean, the number of variables can increase to millions. The
Ensemble Kalman Filter is a Monte Carlo-based alternative to the standard
KF, in which an ensemble of model trajectories is integrated, and in which
the statistics of the ensemble are used to estimate the errors of the models.

5.7 Summary

We can extend the LKF that estimates the state of linear systems that are
governed by linear system and measurement models to nonlinear systems.
Nonlinear systems are governed by a nonlinear system model and a nonlinear
measurement model.

In order to use the ideas and techniques from the LKF chapter, we use
linearization techniques to linearize the nonlinear system and measurement
models. By defining nominal state and measurement trajectories, and by
defining state and measurement perturbations, we linearize the nonlinear
models by dropping the higher order terms of a Taylor series expansion.

Using the Perturbation KF, we estimate the perturbations around the
nominal trajectories. Advantages of this approach are the possibility to
off-line compute needed Jacobian matrices, and perform off-line analysis of
Kalman gain and state uncertainty behavior. However, if the perturbations
do not stay small, the PKF will make large estimation errors due to the fact
that it does not update the nominal trajectory with information from the
true system.

We deal with this problem by updating the nominal trajectory with the
latest information about the true state of the system. The Extended KF
incorporates a new state estimate into the nominal trajectory once a meas-
urement has been incorporated. This allows the EKF to make future state
and measurement predictions more accurately. However, the improved ac-
curacy of the nominal trajectory comes at the price of loss of off-line analysis
possibilities, since in the EKF state estimates are used in the computation
of the nominal trajectories.

We can reduce the errors that can occur due to large nonlinearities in
the system further by iteratively updating the nominal trajectory with the
best estimate of the state of the system. The idea implemented in the
Iterated Extended KF is that a measurement should be incorporated into
the best estimate of the system at all times. The IEKF implements this idea
by iteratively computing an intermediate state estimate, until it notices no
further improvement.

In the light of possible additional system and measurement dependen-
cies we can generalize the EKF equations. Noticing that we can include
noise descriptions into the nonlinear functions, and that the prediction of
measurements is in fact an estimation process on its own, we can create a
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general framework for state estimation in the case of independent random
parameter dependencies.



Chapter 6

System and Measurement
Models

As we have seen in Chapters 4 and 5, the KF uses a system model and a
measurement model. Depending on the application area, these models differ.
In the robot localization problem from Chapter 2 we have a sensing robot
driving around in an environment trying to find out its location. In this
chapter we will develop models that model different aspects of a navigating
robot, in particular driving and sensing aspects. In following chapters we
will use these models in KF instances.

In Section 6.1 we derive a system model that models the location of a
robot using relative displacement measurements. In Section 6.2 we describe
a GPS-like sensor that senses the full location of the robot directly. In
Section 6.3 we derive a measurement model that models measurements made
from the location of landmarks from the robot’s point of view. We end the
chapter with some general modeling remarks in Section 6.4.

6.1 Driving System

Mobile robots have a driving system allowing them to move around in an
environment. Commonly the driving system consists of wheels, but a legged,
tracked, or snake shaped vehicle is a possibility. Legged vehicles have the
potential of traveling over rough terrain where wheeled or tracked vehicles
can not go. Snake-shaped vehicles may be able to move over loose sand
and rocks which might be difficult for other systems. However, most ro-
bot vehicles use wheels to move themselves. Vehicles with wheels are less
complex, while suitable for navigation in the daily environments of many
people.
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Wheel Encoders. Wheels and other driving mechanics are controlled by
motors. These motors can make wheels move either forward or backward.
By means of wheel encoder sensors we can monitor the number of wheel
rotations of a specific wheel [11]. We can use the wheel encoder readings
from these sensors together with knowledge about the diameter of the wheel
to estimate its displacement. Wheel encoder sensors provide relative position
measurements.

In general we are not interested in the relative displacement of each
wheel, but in the displacement of the robot as a result of the displacements
of all wheels in the drive system together. Depending on the configuration
of the guidance system, the conversion between output from the wheel en-
coders from the different wheels and the relative displacement of the robot
is different.

6.1.1 The Perfect System Model

In order to model the way in which a drive system changes the location of
a robot, we first take a look at the ideal situation in which there is no noise
in the environment. Once we have a noise-free system model, we extend the
model to take into account noises that influence the system.

In our case, the system model that we are looking for describes how the
location of the robot changes due to the dynamics of the guidance system.
Since we can monitor the relative dynamics of the guidance system with
wheel encoders, we are looking for a system model that given the last location
and a relative displacement determines the new location. In order to derive
this model, let us formalize a location and a relative displacement more
precisely.

Location. Figure 6.1(a) shows schematically how we define the location
of a robot. The location of a robot is defined in a global coordinate system
Cg and consists of the x and y coordinates of the center of the robot, the
center point, and the orientation φ of the robot in that general coordinate
system at a certain time k,1

xk =

 x[x],k

x[y],k

x[φ],k

 . (6.1)

Relative Displacement. The relative displacement is the displacement
of the center point of the robot over a certain time. We assume that we
can convert the separate displacements from the wheels of the robot into

1For readability purposes, we refer to an element e of a vector vk by subscripting the
element name, instead of subscripting the element index in the vector. E.g, we use v[e],k

instead of v1,k.
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x[φ]
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y
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u[∆φ],k−1

u[∆D],k−1

xk−1

(b)

Figure 6.1: Concepts of (a) the location x and (b) the relative measurement uk−1

at a certain time.

a relative displacement measurement uk of the center point of the robot
using some function j(·) that takes as argument raw data dk from the wheel
encoders. We then define the relative displacement as

uk = j(dk) =
[
u[∆D],k

u[∆φ],k

]
, (6.2)

where u[∆D],k is the distance over which the center point of the robot travels,
and u[∆φ],k is the change in orientation during the travelling. Figure 6.1(b)
shows these concepts schematically.

Depending on the number of degrees of freedom of a driving system, the
complexity of the conversion model j(·) increases [4]. In the following, we
assume that the guidance system dependent function j(·) is given, and that
we thus directly have access to the relative displacement uk of the robot.

6.1.1.1 Location Update

Given the relative information uk−1, and given the last location of the robot
xk−1, we want to express the current location of the robot. That is, we look
for the function f ,

xk = f(xk−1, uk−1) =

 fx(xk−1, uk−1)
fy(xk−1, uk−1)
fφ(xk−1, uk−1)

 , (6.3)

consisting of fx and fy to update the x and y coordinates of the location,
and fφ to update the orientation of the location.
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Figure 6.2: Schematic overview of the computation of the new location. The
solid line indicates the path the robot drives from xk−1 to xk.

Coordinates. We derive expressions for fx and fy by means of Figure 6.2.
The figure shows the path that the robot drives from xk−1 to xk. The robot
starts at xk−1 facing direction A; thus, x[φ],k−1 = ∠Axk−1D. The robot then
drives a path of length u[∆D],k−1 to xk, whereby the orientation changes
u[∆φ],k−1 = ∠ABxk. It can be shown that ∠Axk−1xk = (1/2)u[φ],k−1, [48],
which gives us

∠xkxk−1D = ∠Axk−1D − ∠Axk−1xk = x[φ],k−1 +
1
2
u[∆φ],k−1.

Besides this angle, we need to know the length of xk−1xk in order to de-
termine the coordinates x[x],k and x[y],k. In general this length is not known,
though a common way to deal with this is to use u[∆D],k−1 as an approxim-
ation [48]. We then calculate the coordinates of xk as

x[x],k = fx(xk−1, uk−1) = x[x],k−1 + u[∆D],k−1 · cos(x[φ],k−1 +
u[∆φ],k−1

2
)

(6.4)

x[y],k = fy(xk−1, uk−1) = x[y],k−1 + u[∆D],k−1 · sin(x[φ],k−1 +
u[∆φ],k−1

2
).

(6.5)

The interested reader can find equations for the case where the robot is
assumed to drive in a circular path in [48].

Orientation. The expression for fφ is trivially found. If the relative dis-
placement information indicates that the orientation of the robot changes
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by u[∆φ], then the updated orientation of the robot is the sum of this and
the last orientation of the robot. Thus,

x[φ],k = fφ(xk−1, uk−1) = x[φ],k−1 + u[∆φ],k−1. (6.6)

6.1.2 The Noisy System Model

In the derivation of the system model so far we assumed that the driving
of the robot was not disturbed by any noise sources. We assumed that the
wheel encoders worked perfectly; we assumed that we could perfectly map
wheel encoder countings to traveled wheel distance; we assumed that there
were no influences from the environment that disturbed the driving, and that
thus our approximated system function perfectly describes the movement of
the robot over time. In the real world most of these assumptions do not
hold, and thus we will introduce noise in the system model.

6.1.2.1 Noise Modeling

Relative Displacement Noise. Assume that we can model the noise
in the relative displacement by a random noise vector qk being zero-mean
independent Gaussian distributed,

qk ∼ N(q̂k, Uk), (6.7)

where

q̂k =
[

0
0

]
Uk = E[(qk − q̂k)(qk − q̂k)T ]

=

[
σ2
q[∆D],k

σq[∆φ],kσq[∆D],k

σq[∆D],k
σq[∆φ],k

σ2
q[∆φ],k

]
.

In the covariance matrix Uk, the off-diagonal elements are zero, since we
assume that the noise sources are independent of each other. We adjust the
noise-free relative displacement from equation (6.2) by including the term
qk to obtain the noisy relative displacement,

uk = j(dk) + qk (6.8)

=
[
j∆D(dk)
j∆φ(dk)

]
+
[
q[∆D],k

q[∆φ],k

]
.

Since we include the random noise term qk in the model, the relative in-
formation vector uk also becomes a random vector. If we assume that j(·)
is deterministic, the uncertainty in uk equals the uncertainty in the noise
term qk.
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System Noise. We can model noise sources that are not directly related
to the relative displacement with a system noise term. Assume that we can
model these noise sources with a term wk, that is independent Gaussian
distributed,

wk ∼ N(ŵk, Qk), (6.9)

where

ŵk =

 0
0
0


Qk = E[(wk − ŵk)(wk − ŵk)T ]

=

 σ2
w[x],k

σw[y],kσw[x],k σw[φ],kσw[x],k

σw[x],k
σw[y],k

σ2
w[y],k

σw[φ],kσw[y],k

σw[x],k
σw[φ],k

σw[y],kσw[φ],k σ2
w[φ],k

 .
We assume that the noise sources in the location elements are independent
of each other, and thus the off-diagonal elements of the covariance matrix
Qk are zero. The diagonal elements of the covariance matrix contain the
variances of the noise vector wk. Including this noise term in the noise-free
system model from equation (6.10) we obtain

xk = f(xk−1, uk−1) + wk−1 (6.10)

=

 fx(xk−1, uk−1)
fy(xk−1, uk−1)
fφ(xk−1, uk−1)

+

 w[x],k−1

w[y],k−1

w[φ],k−1

 .
Instead of a deterministic location xk, the location is now a random vector.
The variance of the location grows with every time step, since the location
xk at step k depends on the location xk−1 one step earlier and since at
every time step the system noise increases the variance. Besides this, the
relative displacement vector uk−1 is also a random vector with influence on
the uncertainty in xk.

6.1.2.2 Remarks

Although the modeled noise sources are Gaussian, the distribution of the
locations does not have to be Gaussian. This can be seen from Figure 6.3.
This figure shows the locations computed in 100 runs simulating a robot
driving in a square. At each run, the model was initialised with a slightly
different starting position, distributed according to the system noise. Thus
the initial uncertainty in the position was Gaussian distributed. Figure
6.3(a) shows the full runs, Figure 6.3(b) zooms in on the first and last
steps. From this last figure we can see that the locations at each step are
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Figure 6.3: 100 true x and y trajectories of robot driving squares given initial loc-
ation with some uncertainty. Runs start at (100,100) and are counter-clockwise.

not Gaussian distributed. This non-Gaussianness is caused by the nonlinear
relationship between the x and y coordinates on one hand and the orientation
and orientation change on the other.

Notice in Figure 6.3(a) that given uncertainty in the initial location only,
after four turns of 90 degrees, the model computes the same location as it
started with. If there would be no uncertainty at all in the orientation of
the location, then the uncertainty in the x and y coordinates would stay the
same throughout the run. However, if there is uncertainty in the orientation,
then the uncertainty in the x and y coordinates changes with every step,
due to the fact that x and y depend on the orientation. In particular, the
uncertainty in the y increases until the first turn; then the uncertainty in
the x increases until the next turn; following that, the uncertainty in the y
decreases again; finally, the uncertainty in the x decreases again, to end up
with the same uncertainty in the location as the model started with. This
makes sense, since if there is no uncertainty in the turning, then after four
turns of 90 degrees, the orientation will be the same as initially, no matter
what orientation the model was initialized with.

6.2 Full State Sensor

In this section we model a full state sensor. A full state sensor measures the
full state of the system, in this case the location of the robot. In practical
applications we may be able to construct a virtual sensor, that combines
the information from different other sensors with partial state information
into a measurement that measures the full state. An example of this could
be a combined GPS-compass system.
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6.2.1 The Perfect Measurement Model

Assuming no noise, the perfect measurement zk of all the variables of a state
xk is simply a vector containing for each state variable a variable that takes
on the value of the corresponding state variable. Thus, in our localization
case, the measurement zk is

zk =

 z[x],k

z[y],k

z[φ],k

 . (6.11)

We model the measurement model that given the location of a robot xk
returns the measurement of the full state sensor, as

zk = h(xk), (6.12)

where function h(·) is the measurement function relating a state to a meas-
urement, and which in this case simply is

h(xk) =

 hx(xk)
hy(xk)
hφ(xk)

 =

 x[x],k

x[y],k

x[φ],k

 . (6.13)

6.2.2 The Noisy Measurement Model

Assuming that there are Gaussian distributed noise sources corrupting the
measurements, we model these with the independent Gaussian noise vector
vk,

vk ∼ N(v̂k, Rk), (6.14)

where

v̂k =

 0
0
0


Rk = E[(vk − v̂k)(vk − v̂k)T ]

=

 σ2
v[x],k

σv[y],kσv[x],k σv[φ],kσv[x],k

σv[x],k
σv[y],k

σ2
v[y],k

σv[φ],kσv[y],k

σv[x],k
σv[φ],k

σv[y],kσv[φ],k σ2
v[φ],k

 .
With this measurement noise vector we can update the noise-free measure-
ment model from equation (6.12) to incorporate noise,

zk = h(xk) + vk. (6.15)

Notice that zk is a random vector, since the measurement noise vk is a
Gaussian vector. Besides the influence of the measurement noise, uncer-
tainty in the location xk can also have its influence on the uncertainty in
zk. If the uncertainty in xk is Gaussian distributed, then zk is also Gaussian
distributed.
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6.3 Landmark Detection Sensor

In this section we model a sensor that can detect a landmark. The concept
of a landmark should be read in a wide sense. In this section we only assume
that a landmark has an x and y coordinate and an orientation in the same
coordinate system as the robot’s location. Contrarily to the full state sensor
from the previous section, the landmark sensor makes measurements from
the robot’s point of view using for example a vision system.

6.3.1 The Perfect Measurement Model

Assuming no noise corrupting the measurements, we first define a landmark
location and measurement, after which we derive the measurement model.

Landmark Location. We assume that the robot has a map with the
locations of landmarks in the global coordinate system Cg of which the
location of the robot xk is also an element. The location lk of a landmark
is defined as

lk =

 l[x],k

l[y],k

l[φ],k

 , (6.16)

where l[x],k and l[y],k are the coordinates and l[φ],k is the orientation of the
landmark in the global coordinate system Cg.

Landmark Measurement. We define the measurement zk as the location
of a landmark from the viewpoint of the robot, that is,

zk =

 z[x],k

z[y],k

z[φ],k

 , (6.17)

where z[x],k and z[y],k are the coordinates and z[φ],k is the orientation in the
coordinate system Cr having as origin the location of the robot.

Figure 6.4 schematically shows the relation between the robot at location x,
a landmark l, and a measurement z. The measurement model that we are
looking for gives the location of the landmark from the robot’s point of view,
given the location of the robot xk, and given the location of the landmark
lk, both in global coordinates. That is,

zk = h(xk, lk) =

 hx(xk, lk)
hy(xk, lk)
hφ(xk, lk)

 , (6.18)

where h(·, ·) is the measurement function that relates the robot’s location
and the landmark’s location to a measurement.
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Figure 6.4: Schema of sensor and robot.

Coordinate Transformation. We have to transform the global land-
mark location to the coordinate system of the robot. Transformation between
coordinate systems is done with the geometrical transformations translation,
rotation and possibly scaling [18]. Assuming that the unit length of the ro-
bot’s coordinate system is the same as that of the global coordinate system,
by doing a translation over −xk, followed by a rotation over −x[φ] we go
from the global coordinate system to the robot’s coordinate system.

In particular, the global location of landmark l is converted to measured
location z as seen from the robot’s perspective by

z = R(−x[φ])l
′, (6.19)

where l′ represents the translation of the landmark,

l′ =

 l[x]

l[y]

l[φ]

−
 x[x]

x[y]

x[φ]

 =

 l[x] − x[x]

l[y] − x[y]

l[φ] − x[φ]

 ,
and R(−x[φ]) represents the rotation matrix over −x[φ] degrees,

R(−x[φ]) =

 cos(−x[φ]) − sin(−x[φ]) 0
sin(−x[φ]) cos(−x[φ]) 0

0 0 1
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=

 cos(x[φ]) sin(x[φ]) 0
− sin(x[φ]) cos(x[φ]) 0

0 0 1

 .
With this, we derive the measurement function h(·, ·) by rewriting the matrix
form of (6.19) into

zk = h(xk, lk) =

 hx(xk, lk)
hy(xk, lk)
hφ(xk, lk)


=

 (l[x],k − x[x],k) cos(x[φ],k) + (l[y],k − x[y],k) sin(x[φ],k)
(x[x],k − l[x],k) sin(x[φ],k) + (l[y],k − x[y],k) cos(x[φ],k)
l[φ],k − x[φ],k

 . (6.20)

6.3.2 The Noisy Measurement Model

In the ideal case the derived model gives the exact location and orientation of
a landmark. However, in practice, there may be noise in landmark detection
systems. Besides specific sensor device dependent noise sources, there can be
uncertainty in the location of the robot and in the location of the landmarks
on the map. This uncertainty can be due to inaccurate modeling of the map,
or slight variations of the true positions of the landmarks.

To deal with the uncertainty in the mapped locations of the landmarks,
we assume that the location of a landmark lk is Gaussian distributed ac-
cording to

lk ∼ N(l̂k, Lk), (6.21)

where l̂k is the best estimate of the location of the landmark with covariance
Lk,

Lk =

 σ2
l[x],k

σl[x],k
σl[y],k

σl[x],k
σl[φ],k

σl[y],k
σl[x],k

σ2
l[y],k

σl[y],k
σl[φ],k

σl[φ],k
σl[x],k

σl[φ],k
σl[y],k

σ2
l[φ],k

 .
Besides the uncertainty in the knowledge about the landmark locations, the
sensors used to detect the landmark can also have noise. We assume that
the noise caused by these sources is also Gaussian distributed and we model
this noise with the measurement noise term wk,

wk ∼ N(ŵk, Rk), (6.22)
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Figure 6.5: Influence of orientation uncertainty on coordinates.

where

ŵk =

 0
0
0


Rk =

 σ2
z[x],k

σz[x],k
σz[y],k

σz[x],k
σz[φ],k

σz[y],k
σz[x],k

σ2
z[y],k

σz[y],k
σz[φ],k

σz[φ],k
σz[x],k

σz[φ],k
σz[y],k

σ2
z[φ],k

 .
Adding this noise to the measurement model as derived in equation (6.20),
we obtain

zk = h(xk, lk) + wk. (6.23)

6.3.2.1 Remarks

Since the measured x and y coordinates have nonlinear relationships with
the orientation of the location, the distribution of the measurements need



6.4 Modeling Remarks 89

not be Gaussian. Depending on the amount of noise in the orientation
of the location of the robot, the distribution of the x and y coordinate
of the measurements is less Gaussian. We see this in Figure 6.5 in which
the distribution of the x coordinate of the measurement to a landmark is
plotted, given different amounts of uncertainty in the orientation of the
robot’s location.

6.4 Modeling Remarks

As we have seen in this chapter, modeling takes insight into the system. The
basis for models often comes from physical, dynamical, and geometrical in-
sight into the systems. Often alternative model designs for a certain system
exist. In the end, models are always approximations of the true systems
and some models may be more accurate than others. Which approximation
works best differs per application. It is often not necessary to make models
that perfectly model the behaviour of a system. An almost perfect model
may result in slow evaluation, or may be too complex to analyze effectively.
In particular determining noise values for different components may be a
difficult task if the systems are complex.

The models that we derived in this chapter assume simple noise models.
We assumed that we can model the noise with noise models that do not
change over time and we assumed that moreover all the noise sources are in-
dependent of each other. In practice, it may be more accurate to make more
complex noise models that give the noise distribution at different times. For
example, in vision applications, objects further away may be more difficult
to detect than objects nearby. The measurement noise assigned with meas-
urements to objects far away could be adjusted to keep this in mind. Also,
noises may change over time. Due to ageing, sensors may give different
measurements, possibly resulting in a larger variance. For the same reason,
driving systems may drive less accurate if tires get old.

Besides the models that we derived in this chapter and giving inform-
ation about every state variable directly or indirectly, we could also have
modeled sensors that gave only partial information. For example, a sensor
that detected only the orientation or only the distance to a landmark [13].

6.5 Summary

We can model the driving and sensing of a navigating robot into system and
measurement models. Modeling takes insight into the system that we want
to model. Starting with the assumption that there is no noise influencing
the actual system, we use dynamical and geometrical insights to derive the
models. Having created noise-free models, we refine the models by including
terms that model the noise aspects that can have their influence in practice.
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In robot localization context, we can model the driving system of a ro-
bot into a system model, that models how actions, monitored by relative
measurements from wheel encoders, result in new locations. Due to non-
linear relationships between the orientation of the robot and the x and y
coordinate of its location, the distributions of these need not be Gaussian.

We can model sensors that sense the environment into measurement
models. We can combine measurements from different physical sensors, like
GPS and compasses, as a virtual full state sensor that supplies information
about the full location of the robot. We model sensors that measure the
location of landmarks from the robot’s point of view with the landmark
sensor model. Given the location of the robot and of a landmark in global
coordinates, this model transforms the global location of the landmark into
the location of the landmark from the robot’s point of view. Again, due to
nonlinear relationships with the orientation, the distribution of the meas-
urements need not be Gaussian.



Chapter 7

Kalman Localization

In this chapter we combine the theory from Chapters 2, 3, 4, 5, and 6
to show how we can apply Kalman Filters (KF) to the Robot Localization
problem. We implemented a simulator for doing experiments, that allows us
to step-by-step combine a part of the localization problem with the technique
of KFs. Along the way we discuss several practical and theoretical topics
giving a better understanding of how KFs work, what their possibilities are,
and how we can analyze their performance. We look at how the KF behaves
under different circumstances, considering practical situations.

In Section 7.1 we start with some general remarks about the use of
simulators and about applying KFs to the localization problem. In Sections
7.2 and 7.3 we look at the basic workings of KFs while we discuss how to use
the driving system and full state sensor from Chapter 6 to perform position
tracking. In Section 7.4 we look at validation gates and discuss how we can
use these in the kidnapped robot problem. In Section 7.5 we discuss how to
deal with uniform beliefs in KFs, when we look at how to apply KFs in the
global positioning problem. We provide some references to related work in
Section 7.6.

7.1 Analyzing Kalman Filters

This chapter has a more practical character than the previous chapters. We
show the behavior of Kalman Filters, pointing out different aspects of the
theory that we have discussed in the previous chapters. We start with some
remarks about the way we perform our Kalman Filter analyses.

Simulator. In order to illustrate the workings of KFs, we have implemen-
ted a simulator in which we can model different systems and sensors. The
simulator consists of a truth model and a KF model. The truth model mod-
els the true system and sensors. The KF model describes the KF part of
the simulations. See Appendix A for more details on the simulator.
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A simulator makes it is easy to experiment with different parameter
settings to explore the behavior of the KF. It is for example easy to adjust the
amount of noise in the simulated environment to see how the KF responds
to this.

However, the truth model of the simulator should generate data repres-
enting true data as accurately as possible. Therefore, the models describing
the true system and sensors have to be as accurate as possible. Making these
models is very time consuming and takes deep insight into the systems to
be modeled. For that reason, in our simulator, the models used to represent
the true systems are the same as the models used in the KF model1. This
has as consequence that the KF models perfectly describe the simulated
truth, including the noise modeling. Although this provides a good setting
for testing and exploring KF behavior, results achieved with this setting do
not guarantee the same results in the true world.

Noise Instantiations. In order to perform the simulations, we have to
instantiate the truth and KF model with quantities of the noise levels caused
by the different noise sources. In the true world, these noise levels will differ
from environment to environment, from system to system, and from sensor
to sensor. Therefore, in our simulations, we are not in particular interested
in the exact amounts of noise in the different components. We are interested
in the general behavior and will therefore only mention exact amounts of
noise when necessary. In our discussions we will mainly speak about the
amounts of noise in relative context, and in terms of high and low. Again,
what these terms exactly mean depends on a specific true world application.

Uncertain Analyzing. Since we are dealing with uncertainties we have
to be careful not to jump to conclusions too quick; one successful simula-
tion does not guarantee that others will be successful as well, due to the
uncertainties involved. When drawing conclusions, we have to keep this in
mind. We can deal with the uncertainty by performing multiple runs of
an experiment and averaging the results. This gives an indication of the
average performance. However, in practice, we are not interested if a robot
can use the information from a KF on average, but if the information at a
certain time is useful. Instead of looking at the average of the runs, we will
perform multiple runs and pick out those runs that show interesting aspects
of KFs.

1The truth model can easily be extended with alternative models though. See Appendix
A for more details on the simulator.
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7.2 Predictive Position Tracking

In this first of two sections we will investigate how we can apply the KF
techniques in the localization problem of position tracking. Given the initial
location of the robot, we want the KF to keep track of the position. In
this first section we assume that we have no measurements that correct the
predictions of the KF. Thus, we try to do predictive position tracking.

7.2.1 KF Modeling

In the following we assume that we have a robot equipped with some sort of
driving system that can be modeled using the driving system from Section
6.1. In order to use this model in a KF, we have to instantiate the KF
prediction equations.

Prediction Equations. Since the system model that we obtained in Sec-
tion 6.1 is nonlinear in the orientation of the robot, we use the Extended KF
from Section 5.3 to perform the state estimation. Recall that the prediction
equations of the EKF are

x̂−k = f(x̂+
k−1, ûk−1) + ŵk−1

P−k = Ax,kPk−1A
T
x,k +Au,kUk−1A

T
u,k +Qk−1,

where x̂+
k−1 is the posterior state estimate of the previous time step with

covariance matrix Pk−1; û+
k−1 is the control input that comes from a relative

measurement with covariance Uk−1; f(·, ·) is the nonlinear system function of
the guidance system; and ŵk−1 is the best estimate of the system noise with
covariance Qk−1. The matrices Ax,k and Au,k are the Jacobian matrices with
the partial derivatives of the system function f(·, ·) with respect to the state
x and the control input u respectively, evaluated at the last state estimate
x̂+
k−1 and control input ûk−1. We instantiate the EKF prediction equations

by calculating these Jacobians as

Ax,k =
∂f(x)
∂x

∣∣∣∣
x=x̂+

k−1,u=ûk−1

=


∂fx
∂x[x]

∂fx
∂x[y]

∂fx
∂x[φ]

∂fy
∂x[x]

∂fy
∂x[y]

∂fy
∂x[φ]

∂fφ
∂x[x]

∂fφ
∂x[y]

∂fφ
∂x[φ]


x=x̂+

k−1,u=ûk−1

=

 1 0 −u[∆D] · sin(x[φ] + u[∆φ]

2 )

0 1 u[∆D] · cos(x[φ] + u[∆φ]

2 )

0 0 1


x=x̂+

k−1,u=ûk−1

(7.1)
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and

Au,k =
∂f(x)
∂u

∣∣∣∣
x=x̂+

k−1,u=ûk−1

=


∂fx

∂u[∆D]

∂fx
∂u[∆φ]

∂fy
∂u[∆D]

∂fy
∂u[∆φ]

∂fφ
∂u[∆D]

∂fφ
∂u[∆φ]


x=x̂+

k−1,u=ûk−1

=

 cos(x[φ] + u[∆φ]

2 ) u[∆D] · sin(x[φ] + u[∆φ]

2 )

sin(x[φ] + u[∆φ]

2 ) u[∆D] · − cos(x[φ] + u[∆φ]

2 )

0 1


x=x̂+

k−1,u=ûk−1

.

(7.2)

These two matrices compute the relative change in the variables of the state,
when respectively the last state estimate and control input change. The
columns of Ax,k and Au,k determine per element of xk−1 and uk−1 respect-
ively what their contribution to the elements of xk is. Notice that the x
and y variables of the state are the nonlinear components in the system
function due to nonlinear relationships with the orientation control input
variable u[∆φ] and the orientation state variable x[φ]. If these variables are
constant, then the system function is linear in the state variables. Moreover,
if the distance control input variable u[∆D] also does not change, then the
Jacobians do not have to be recomputed.

Since in this section we are only interested in the predicting behavior of
the KF, we do not use the correction step of the EKF. Therefore, after every
prediction step, we simply copy the prior state and uncertainty estimates
to the posterior state and uncertainty estimates for use in the following
prediction step.

7.2.2 Prediction

With the instantiated EKF prediction equations we can generate predic-
tions of the location of the robot. In order to illustrate the behavior of the
prediction step, assume that we let the robot drive a square shaped path.

Initialization. Assuming that we can measure the true initial location
x0 of the robot with some precision, we initialize the EKF with the true
position of the robot together with the uncertainty. We furthermore assume
that we have access to relative measurements ûk monitoring the control
commands executed by the driving system at every time step. Although
there is uncertainty in this, we do not model this explicitly. Thus, we let the
uncertainty Uk in the relative measurements be zero. Instead, we incorporate
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Figure 7.1: True (dotted) versus estimated (solid) x and y state element values of
robot driving in squares without sensing. Robot starts at S and drives counter-
clockwise.

the uncertainty in the relative measurements in the system noise. We assume
that the system noise mean ŵk is zero at all times, but with some covariance
Qk.

A Run. We perform a number of runs in which we let the robot drive
squares and let the EKF estimate the location of the robot. Figure 7.1 shows
a resulting trajectory of the true and estimated states of a representative
run. As we saw in the Chapter 6, the robot does not drive in a perfect
square due to the system noise. Instead, the difference between the true
and noise-free trajectory, the trajectory of a perfect square path, increases
over time.

The EKF has no way of knowing the exact difference between the noise-
free and true trajectory, since it does not receive any measurements of the
true state. It only knows that on average the system noise is zero, which
makes the predictions of the EKF follow the noise-free path, as we see in
Figure 7.1. Thus, in the case of no measurements, the estimated state tra-
jectory is not adjusted towards the true trajectory; it follows the trajectory
as modeled by the system model.

To make the estimation error, that is, the difference between the true
and estimated states, more clear, we have plotted the estimation error per
state element in Figure 7.2. Notice that the variation in the estimation error
seems to increase over time. The EKF knows that the uncertainty in the
system will decrease the chance that the predicted state estimates equal the
true states more and more. The EKF estimates the variance in the state
estimates. These variances indicate the error in the state estimate elements.
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Figure 7.2: Estimation error for x, y and orientation estimate respectively.

Ideally, the variance in the state estimates that the KF computes should
at all times include the true state as possible state. We can visually see
if this is the case by plotting the deviations of the state estimates, that
is, the square roots of the variances, into the estimation error plots. The
deviation that the EKF calculates indicates how certain it is that the true
state lies within a certain distance from the estimated state. The EKF is
about 66% certain that the true state element lies within one deviation from
the estimated element; this is called the 1σ confidence interval. The EKF is
about 95% sure that the true state element lies within two deviations from
the estimated element; this is called the 2σ confidence interval. If we plot
the deviations into the error plot, ideally the error stays under the deviation
lines.

In Figure 7.3 we have plotted the estimation error together with the 1σ
and 2σ confidence intervals. We see that in this particular run the error that
the EKF makes falls largely within the 1σ uncertainty region and completely
within the 2σ region. This implies that at all times the true state lies within
2 deviations from the estimated states. We say that the state estimates are
consistent.

We also see that there is an increasing trend in the deviation in the
different state estimate variables. If we would let the robot drive around
without taking pre-cautions, the uncertainty would grow without bounds,
decreasing the information content of the state estimates. They become less
informative.
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Figure 7.3: Estimation error (dashed) with 1σ (dotted) and 2σ (solid) confidence
intervals for x, y and orientation estimates respectively.

7.2.3 Initial State Estimate Issues

In the given example, the EKF was initialized with the true location of the
robot and some uncertainty. In practical situations this location may be
available only within some certainty, incorrect, or not available at all.

Uncertain Initial State Estimate. If we are only certain about the
initial state estimate to some degree, we initialize the uncertainty in the
initial state estimate with the uncertainty we have in it. In this way, we tell
the filter that we are not too confident that the initial state given is the true
state.

However, if the initial uncertainty is high and we do not have correcting
measurements, then the state estimates will not be very informative, since
as we saw, the uncertainty only increases. If the initial uncertainty is low,
then it will take a longer time before the state estimates become useless, de-
pending on the level of system noise. At what point state estimates become
useless differs per application. As we shall see in the next section, the un-
certainty in the state estimate has consequences for the way measurements
are incorporated.

Incorrect Initial State Estimate. We saw that the EKF follows the
noise-free trajectory if it does not get any measurements. This has the
consequence that if the initial state does not equal the true state, then
the noise-free trajectory will have an incorrect starting state. All following
state estimates will be based on this incorrect starting state and thus the
whole trajectory will be different from the true trajectory. This in itself is
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Figure 7.4: Estimation error (dashed) and 95% confidence intervals for x estimate,
estimated at KF system noise set as c times the true system noise, where c ∈
{2, 1, 0.5, 0.25, 0.001}, from outside to inside. True system noise (c = 1) is dotted.

not a problem, since we already know that due to system noise the true
trajectory will be different from the estimated. However, if the true state is
not captured by the uncertainty in the initial state estimate, then the state
estimates will be inconsistent. Moreover, they might stay inconsistent, since
there are no measurements to correct the estimates.

Unavailable Initial State Estimate. When we do not have access to the
initial state, then we cannot track it. In that case we will have to do global
localization. We return to this in Section 7.5, where we discuss different
options for determining an initial state.

7.2.4 KF System Noise Issues

In practical situations the modeled system noise may not always reflect
the true system noise. It can be difficult to obtain accurate values for the
variance in the state variables, and besides this, amounts of noise may change
over time. Therefore it is interesting to look at what the influence of higher
or lower system noise is on the performance of the KF. Ideally the system
noise as modeled in the system model reflects the amount of system noise
in the true system. The KF uses the modeled system noise to express the
growth in uncertainty in the state estimates due to unmodeled influences.

Figure 7.4 illustrates the influence of higher and lower system noise set-
tings in the KF. We initialized the KF with system noise values varying
between 0.001 and 2 times the true system noise. Note that letting the
KF estimate the states of the system with different noise initialization has
no consequences for the values of the state estimates. Although the un-
certainty in the state estimates uses the state estimates to propagate prior
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uncertainty, the state estimates themselves are not influenced by the amount
of state uncertainty, as long as there are no correcting measurement. Thus,
the estimation error that the KF makes is the same as earlier.

Lower KF System Noise. If the modeled system noise is lower than the
actual system noise, then the KF will incorrectly assume that the uncertainty
in the state of the system increases with the modeled system noise. In our
localization case, modeling lower system noise than the true system noise
has as consequence that the location estimates have less uncertainty than
they should have. This can result in decision making problems, since these
can be based on the location of the robot. Having lower system uncertainty
can result in the true state not being captured by the confidence intervals.
The information content of the location estimates is higher, but it may not
be consistent.

Higher KF System Noise. If the modeled system noise is higher than
the actual system noise, then the KF will assume more noise in the system
than that there is and increase the uncertainty in its state estimates unne-
cessary much. In localization context, modeling higher system noise than
the true system noise makes the uncertainty in the state estimates increase
quicker than that they strictly should. Thus, location estimates are more
unsure and therefore decision making controllers that base their decisions on
the location estimates will be more conservative. The information content
of the location estimates is lower.

It is important to realize that if the noise is modeled too low, that it
then will take a longer time before the KF becomes unsure about its state
estimates. The height of the system noise determines the deterioration of
the state estimates. This has consequences for the incorporation of meas-
urements as we shall see in the next section.

7.2.5 Linearization Errors

We used the EKF in this section since the system function that describes
the state transitions of the location is nonlinear due to the orientation. The
advantage of the EKF over the LKF is that the EKF can deal with nonlinear
functions, since it linearizes the system functions around the latest state
estimates. In Section 5.2 we discussed that we could only do this when
the perturbations stay small. In the examples in this section so far, the
uncertainty in the state elements was small enough to make this assumption
hold. For illustrative purposes, we show what happens when this assumption
does not hold.

Assume that we have a significant amount of system noise in the orient-
ation of the robot. The orientation of the robot is the element that causes
the nonlinearities in the system function, and thus the perturbations in this
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Figure 7.5: Linearization error due to high orientation noise.

element have to stay small. If they do not stay small, the EKF can easily
make inconsistent state estimates.

Figure 7.5 shows the result of a run of the ‘square’ driving robot in an
environment with high noise in the orientation. In Figure 7.5(a) we see
that due to the large amount of noise in the orientation the trajectory of
the true states does not resemble that of a square at all. On the contrary,
the estimated state trajectory still follows a square since the state estimates
do not depend on the uncertainty when there are no measurements. Figure
7.5(b) shows the estimation error and estimated 95% confidence intervals for
the x coordinate of the state estimate. Due to the high perturbations in the
orientation, the EKF is not able to enclose the estimation error with the 95%
confidence interval during the first 52 steps. Due to the linearization errors,
the x element estimates are then inconsistent. After that, the confidence
intervals all of a sudden grow significantly, with as result that the estimation
error is encaptured by them. The confidence intervals grow, since at the
52nd step the robot turns the first corner of the square its driving with as
consequence that the uncertainty in x direction increases.

Figure 7.6 shows another example of the influence of nonlinearities. In
this hypothetical case we modeled no system noise, and only initial uncer-
tainty in the estimate of the orientation. The EKF is initialized with the
true location of the robot, after which we performed 50 runs, each time
starting from the same initial location. Due to the initial uncertainty in the
orientation, the robot drives different paths. The figure shows the locations
the robot was at during the different runs and the regions in which the EKF
believed the true state was located as lines. These lines are in fact 95%
error ellipses with very small minor axis in x direction. The figure shows
that the EKF is not able to encapture the distribution of the locations of
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Figure 7.6: Linearization error due to initial uncertainty in orientation. 50 true
state trajectories (dotted) and estimated 95% error ellipses (solid).

the robot adequately. The error ellipses do not encapture the shape of the
non-Gaussian distribution of the location. Thus, the state estimates are
inconsistent.

In both examples the state estimates are inconsistent. A way to deal with
this is by adding extra noise terms to the system model that represent the
uncertainty due to linearization errors. However, the uncertainty caused by
linearization errors can be hard to determine and is system model specific.
In Chapter 8 we will look closer at how linearization errors occur and look
at how the Iterated EKF deals with them.

7.3 Corrective Position Tracking

In this second section on position tracking we use measurements from a full
state sensor to correct the predictions made with the model from the previ-
ous section in order to reduce the unbounded uncertainty growth. Using a
full state sensor allows us to illustrate the nature of KFs, since we can easily
compare measurements with locations.

7.3.1 KF Modeling

In the following we assume the prediction equations from the previous sec-
tion. Besides that we assume that the robot has a full state sensor that
we can model as in Section 6.2. In order to use this sensor to correct the
predictions, we instantiate KF correction equations.
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Correction Equations. Recall from Section 6.2 that the governing meas-
urement function of the full state sensor is linear in all state elements and
that we thus can use the LKF correction equations. However, we continue
using the EKF and show that the resulting EKF equations are the same as
when we would use the LKF. Therefore, recall that the correction equations
of the EKF are

x̂+
k = x̂−k +Kk(zk − h(x̂−k ))

P+
k = (I −KkHk)P−k ,

where

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1
,

where the Jacobian matrix Hk with partial derivatives of the measurement
function h(·) with respect to the state x is evaluated at the prior state
estimate x̂−k , which in this case is

Hk =
∂h(x)
∂x

∣∣∣∣
x=x̂−k

=


∂hx
∂x[x]

∂hx
∂x[y]

∂hx
∂x[φ]

∂hy
∂x[x]

∂hy
∂x[y]

∂hy
∂x[φ]

∂hφ
∂x[x]

∂hφ
∂x[y]

∂hφ
∂x[φ]


x=x̂−k

=

 1 0 0
0 1 0
0 0 1

 . (7.3)

Notice that since the Jacobian only contains constants, the measurement
function is linear in all the state variables. We do not have to recompute
the matrix at every time step, and it is easily seen that this would also be
the matrix that we would use as measurement transfer matrix if we would
use the LKF.

7.3.2 Correcting Locations

With the EKF correction equations we can correct the state estimates. As-
sume that our robot drives squares and that at every step it receives a
measurement from its full state sensor. We initialize the measurement noise
with the true measurement noise and determine measurements for the runs
of the previous section.

Figure 7.7 shows the estimated state trajectory that the EKF generates
during one of the runs. In Figure 7.7(a) we plotted the true and estim-
ated state trajectories. In Figure 7.7(b) we plotted the estimation error and
estimated 95% confidence intervals of the run from the previous section,
together with the estimation error and confidence intervals of the new run.
We clearly see that the EKF estimates the trajectory of the robot signi-
ficantly more accurate when it has access to measurements. In fact, the
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ively). Posterior estimation error and
confidence interval with measurements
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Figure 7.7: Position tracking with corrections.

posterior uncertainty in the case with measurements reduces to a line when
compared to the posterior uncertainty in the case without measurements. In
the following we will look closer at this result and at how the EKF achieved
it.

Step by Step. In Figure 7.8 we have plotted the first 19 steps of the
true state and measurement trajectory, the prior and posterior estimated
state trajectory and the estimated measurement trajectory. We first of all
notice that the estimated trajectory is not the noise-free trajectory that
the robot drives in the case that the EKF does not have access to any
measurements, as in the previous section. Instead, we see that when there
is a measurement, the EKF corrects the state estimate. Sometimes this
brings the state estimate closer to the true state, for example at step 5,
sometimes however it brings it further away, for example at step 3.

To see what the EKF exactly does, we look at an arbitrary step, the
transition from step 4 to 5. The robot is at true location 4; the EKF
estimates the location of the robot to be somewhat higher. The robot makes
its step by moving forward to arrive at true location 5. The EKF uses the
relative displacement information from the wheel encoders to predict where
the robot will be at time 5, given that it was at estimated location 4 when
it started. The prediction of the path of the robot is shown in blue in the



104 Kalman Localization

100 120 140 160 180 200 220 240 260 280 300
86

88

90

92

94

96

98

100

102

104

106

x

y

←1
←1←1

←1
←1 ←2←2←2

←2
←2

←3

←3

←3

←3

←3

←4

←4

←4

←4

←4

←5

←5

←5

←5

←5

←6

←6
←6

←6

←6

←7

←7←7
←7
←7

←8

←8

←8

←8

←8

←9

←9

←9

←9

←9

←10

←10
←10

←10

←10

←11

←11

←11

←11

←11

←12

←12

←12

←12

←12

←13
←13

←13

←13

←13

←14

←14
←14

←14

←14
←15

←15←15
←15

←15

←16
←16

←16
←16

←16

←17

←17

←17

←17

←17

←18

←18
←18

←18

←18
←19
←19
←19

←19

←19

Figure 7.8: First 19 steps from square driving robot. True trajectory (dotted,
blue); true measurements x (blue); predicted trajectory (solid, blue); predicted
measurements o (blue); state corrections (solid, red); posterior estimate traject-
ory (dotted, red).

figure and results in predicted location 5.
At that time the robot receives a measurement from its location sensor,

true measurement 5. Due to measurement noise, the sensor reading does not
exactly point to the location of the robot at that time. In order for the EKF
to incorporate the true measurement, it makes a measurement prediction.
Since the EKF knows that the location sensor senses the location of the
robot, the best prediction of the sensor reading is the best location estimate
so far. The predicted location is denoted with the red ‘o’ at step 5. As we see
in the figure, the distance between the predicted and true measurement is
quite large in the y coordinate. The EKF adjusts its state prediction toward
the true measurement by reducing the y coordinate of its state estimate
with some amount. We denote this correction by the red line in the figure,
resulting in corrected location estimate 5 at the end of the red line. After
the correction, the robot drives to location 6, incorporates the movement
in its last location estimate, receives a measurement, and incorporates the
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measurement, etc.
Notice that around step 12 the difference between the estimated traject-

ory and the true trajectory is significantly smaller than around step 5. One
may think that this is due to the fact that the robot has seen more meas-
urements and that thus by averaging the measurements the estimate of the
location is closer to the true location. However, as will become clear later,
this is not the reason. The reason is that the measurements around step 12
are closer to the true trajectory than earlier. To clarify this, we first look
more precisely at the mechanism that determines how much of measurement
residual is incorporated, the Kalman Gain.

7.3.3 Kalman Gain

The inclusion of measurements into state estimates is determined by the
Kalman Gain, influenced by the uncertainty in the prior state estimate and
the uncertainty in the measurement estimate. Intuitively, measurements
with high precision should result in precise state estimates. The measure-
ments measure the full state, and thus if they have high precision, the KF
can count on them as good indicators for the true state. The Kalman Gain
should reflect this.

In Figure 7.9 we have plotted the relation between the prior uncertainty,
the measurement noise, and the Kalman Gain for some variable of which the
measurements measure this variable directly and are corrupted by measure-
ment noise. The plot shows that the higher the prior uncertainty the more
the KG moves towards one. The higher the prior uncertainty, the less con-
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Figure 7.10: Prior and posterior variance in x, y and orientation estimates re-
spectively. Predictions (blue); corrections(red).

fidence the EKF has in the state estimate and thus the more it wants to take
information from the real world. On the other hand, the measurement noise
tries to lower the Kalman Gain. Higher uncertainty in the measurements in-
dicates that the information from the real world is not that trustworthy and
that thus less of the information should be taken into account. The result-
ing Kalman Gain balances these two uncertainties. Notice that the Kalman
Gain does not depend on the values of neither the predicted measurement,
nor the true measurement.

7.3.4 Uncertainty Convergence

In Figure 7.10 we have plotted the predicted and corrected variance in the
location estimates as computed by the EKF during the 19 steps of the ex-
ample. We notice that the variances in all elements quickly reach a stable
state. The prior and posterior variances converge. The increase in uncer-
tainty due to prediction and the decrease in uncertainty due to correction
keep each other in balance. The steps before the variances show their stable
behavior are under the influence of the uncertainty in the initial location es-
timate. If the measurement noise is higher it will take a longer time before
the variances reach a stable phase.

The convergence occurs, since the uncertainty in the system noise and
the measurement noise are constant. The uncertainty in the predicted meas-
urement consists of the uncertainty in the location estimate and the meas-
urement noise. Based on this, the Kalman Gain determines the balance
between the two uncertainty components. Since in our case the increase in
noise is constant at every time, there is a moment at which the decrease
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Figure 7.11: For each estimated location variable x (top), y (middle), φ (bot-
tom):(left column) measurement residual (solid) and prior uncertainty (dotted);
(middle column) Kalman Gain; (right column) posterior uncertainty.

in uncertainty equals the increase in uncertainty. From that time on, the
Kalman Gain has equal values at every time step. We can see this in Figure
7.11.

The first column in the figure shows the uncertainty in the prior es-
timate and measurement residual respectively for the x, y and orientation
estimates. Notice that the measurement residual is always larger than the
prior uncertainty, since the uncertainty in the residual besides the location
estimate also depends on the measurement noise.

The second column in the figure shows the computed Kalman Gains.
Notice that the Kalman Gains computing the adjustments of the location
variables with the used measurement model are always values between zero
and one. In general this is not the case. In this case it is because the
measurement Jacobian H is the identity matrix. Furthermore, notice that
when the measurement residual and prior uncertainty converge, that then
the Kalman Gain also converges.

The third column shows the resulting posterior variances. The posterior
uncertainty is smaller than the prior uncertainty, unless the uncertainty
in the measurement residual, due to measurement noise, is infinitely high,
resulting in a Kalman Gain of zero. In that case the posterior uncertainty
equals the prior uncertainty.



108 Kalman Localization

0 2 4 6 8 10 12 14 16 18 20
100

200

300

400

step

va
lu

e 
x

0 2 4 6 8 10 12 14 16 18 20
85

90

95

100

105

step

va
lu

e 
y

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

step

va
lu

e 
φ

Figure 7.12: Prior and posterior values for location estimates, together with
true (blue x) and predicted (red o) measurements; state predictions (blue), state
corrections (red).

7.3.5 Measurement Residuals

A high Kalman Gain results in high reduction of uncertainty, but not neces-
sarily a large absolute change in estimated values. In Figure 7.12 we have
plotted the prior estimates of the state variables, together with the cor-
rections. We can clearly see that, although the Kalman Gain has a stable
value, the correction changes from time to time. Obviously, the reason for
this is that the Kalman Gain only determines the proportional amount of
measurement residual that is added to the location estimate to correct it.
That is, a high Kalman Gain implies a high use of the measurement resid-
ual. We can see this in the figure if we look at the distances between the
true and predicted measurements. From approximately step 5 the Kalman
Gain stays constant, which expresses itself in a constant proportion of the
measurement residuals being added to the location estimates, a little less
than 0.4. Thus, although the Kalman Gain stabilizes, the state estimates
do not become more accurate.

7.3.6 Consistency

A last thing to look at is whether or not the corrected uncertainty estimates
capture the true states. Reducing the uncertainty in state estimates is only
useful as long as the uncertainty estimates still capture the true state after
correction.

We can visually see if the corrected uncertainty captures the true state by
again looking at the estimation error that the EKF makes and the estimated
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Figure 7.13: Prior (dotted, blue) and posterior (dotted, red) estimation errors,
with prior (solid, blue) and posterior (solid, red) 2σ confidence intervals for x, y,
and orientation respectively.

confidence intervals. Figure 7.13 shows the prior and posterior estimation
errors and the prior and posterior 95% confidence intervals. We see that the
estimation errors are not significantly larger than as indicated by the confid-
ence intervals, although at some steps the error in the x and y coordinates
gets close to the intervals or even passes it.

7.3.7 Infrequent Measurements

So far, the EKF had access to measurements at every time step. However,
in practice, measurements may not always be available at every step of the
run. As we mentioned in Chapter 2, relative position sensors may have a
high frequency of measuring, whereas absolute position measurements may
be less frequently available, due to for example computational time or costs.

In Figures 7.14(a) and 7.14(b) we have plotted the first steps of the
square driving robot when it does not get measurements at every time step,
but at every 10th time step. In Figure 7.14(a) we see that as long as the robot
does not receive measurements, the state estimates follow the trajectory as
indicated by the system model. As discussed in the previous section, the
uncertainty thereby increases, see Figure 7.14(b). As soon as a measurement
arrives, the EKF corrects the state estimate and the uncertainty decreases.
After 10 steps without measurements, the uncertainty in the state estimates
has increased. With constant measurement noise, the Kalman Gain will then
be relatively high, resulting in a relatively high decrease in uncertainty. See
also Figure 7.9 with Kalman Gains. The decrease is higher than when the
measurement would be incorporated one step at a time. Thus, sparsity of
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Figure 7.14: Measurements at every 10th step.

information leads to large use when it is available.
This ‘greediness’ can be a problem, if the measurement is a measure-

ment with a relatively large error at that specific time. The state estimate
will then have a large estimation error. Moreover, the uncertainty in the
corrected state estimate will be low. Suppose that after a period without
measurements there follows a period with a number of measurements, the
Kalman Gain will then be relatively high for the first measurement, but
relatively low for the following measurements. These will be taken less into
account. We will see examples of this later.

7.4 Kidnapped Robot

Now that we have seen how we can use the KF in position tracking, we turn
our attention to the problem of the kidnapped robot. The robot is fully
aware of its location, but all off a sudden is transferred to another location.
This will result in relatively high measurement residuals, since the measure-
ments differ significantly from the measurement predictions. Assuming that
we are estimating the location of the robot with a KF, we can discuss what
happens in that case.

If the robot has been kidnapped, it is at a different location than where it
thinks it is. Assuming that the KF had low uncertainty in its state estimate,
the state estimate will be incorrect and inconsistent after the kidnap. When
measurements arrive, the KF will simply incorporate the high measurement
residuals into the state estimates if it does not take any action to determine
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Figure 7.15: Measurement residuals (o) for x, y and orientation respectively, of
run with measurements at every step, together with 95% measurement residual
confidence intervals (solid).

kidnapping. This results in state estimates moving toward the new situation.
However, until the state estimates have reached that situation, the state
estimates stay inconsistent. It may take a while before the state estimates
have adjusted to the new location, depending on the amount of system
noise and prior uncertainty in the state estimates. If the prior uncertainty is
relatively low, the Kalman Gain incorporates only a relatively small portion
of the measurement residual. The uncertainty in the state estimate will
stay small, since it does incorporate part of the measurement, and thus the
Kalman Gain will keep adjusting the state with small steps.

If the robot would be able to detect a kidnap, it can take appropriate
action it to re-localize itself quicker. Since due to a kidnap the location
changes, measurements taken from the new location will be unexpected.
This results in high measurement residuals. We can use a validation gate to
detect these high measurements.

7.4.1 Validation Gates

Validation gates monitor the measurement residuals to detect unexpected
measurements [29]. We can use the variance in the measurement residuals
to determine whether or not a measurement residual is significantly unex-
pected. Figure 7.15 shows the measurement residuals of the square driving
robot with measurements at every step and the 95% confidence intervals.
In this figure the robot is not kidnapped, and all the measurement residuals
are captured in the confidence interval.

When the robot has been kidnapped, the real measurement may be com-
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pletely unexpected, resulting in an extreme measurement residual. Using the
uncertainty in the measurement residual, the EKF computes the probability
of the obtained measurement residual and determines if it is too unlikely to
correspond to a valid measurement. In that case the EKF detected that
something is wrong. In particular, if multiple consecutive measurement re-
siduals are very unlikely, the likelihood that something is wrong increases.

Notice that since uncertainty in the measurement residual depends on
the prior uncertainty, detecting strange measurements in this way may work
well both when measurements appear frequently as when they appear in-
frequently, since the confidence intervals of the measurement residuals are
automatically adjusted to the uncertainty in the state estimate. With fre-
quent measurements, the error in the state estimates will stay relatively
low, and the measurement residuals as well. When measurements appear
infrequently, the uncertainty in the state estimates increases. As a con-
sequence, the uncertainty in the measurement residual also increases, and
the boundaries of rejection are increased automatically.

7.4.2 Remarks

When the validation gate notices that something is wrong, the robot does not
always have to be kidnapped. Other sources of unexpected measurements
can be caused by failing sensors and increasing measurement noise. In order
to determine if the robot is truly kidnapped, it has to make sure that its
sensor is working well.

Note that if due to detecting of unexpected measurements the robot
decides to reject the measurement, the robot should be careful not to reject
too many measurements. If measurements are rejected, state estimates are
not corrected, and following measurement residuals may also be too high to
be accepted, in particular in the case of a kidnapped robot. This leads to
increasing uncertainty in the state estimates, resulting in that at a certain
moment the measurement residual might get accepted again. This will result
in a large state correction and decrease in uncertainty. However, if the robot
is moved over a large distance, it may take a long time before this point is
reached. The robot is then lost and can not adequately track its position.

Note that rejected measurements that are not due to failing of sensors
and not due to re-localization of the robot may be due to objects corrupt-
ing the measurement. By collecting rejected measurements, the robot may
obtain information about unexpected events in the environment. This may
give options for using the KF in dynamic environments.

7.5 Global Localization

With the discussion of application of KFs in the position tracking and kid-
napped robot problem in the previous sections, we are left with the global
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localization problem. In the global localization problem, the robot does not
know its initial position. Its belief in the location is uniform, that is, it
assigns equal probability to every location in the location space. Since KFs
represent the belief by Gaussians, and since Gaussians are unimodal prob-
ability distributions, we can not directly express a uniform belief. In this
section we look at how to deal with this. We can approximate uniformness
by injecting a very large amount of uncertainty in the initial state estim-
ate, or we can try to obtain the result of uniformness, without explicitly
representing it.

7.5.1 Approximating Uniformness

A first idea is to approximate a uniform distribution by injecting an enorm-
ous amount of initial uncertainty in the initial state estimate when we have
no idea of the state. The Gaussian density over the state space will then
assign probabilities close to zero to the possible states. In this way we can
approximate a uniform distribution.

However, an enormous amount of initial uncertainty in the initial state
estimate results in a very large decrease of uncertainty when a measurement
comes available. This can lead to precision problems in the calculation of the
uncertainty. Thus, the initial uncertainty should be lower than extremely
large, but still large enough to adequately represent a uniform belief. De-
termining the amount of uncertainty needed is system specific and depends
moreover on the unit size used and is therefore not practical in general.

7.5.2 Re-initialization

Instead of trying to approximate a uniform distribution, we can look at what
the consequences of a uniform distribution are and then try to achieve those
results in a way without using large amounts of uncertainty explicitly. A
uniform belief in the state estimate means high uncertainty in that state
estimate. Measurements will compared to this be very certain, and thus the
Kalman Gain will be such that practically all of the measurement residual
is taken into account.

Thus, to obtain the same result as initialization of a large amount of
uncertainty in the initial state estimate, we can try to force the Kalman
Gain to take all of the measurement residual into account without looking
at the uncertainty in the state estimate. The idea is to initialize the KF
once the first measurement comes available, using all the information from
the measurement, including the uncertainty in it.

Maximal Measurement Information. To obtain a Kalman Gain that
takes into account all of the measurement residual, consider the expression
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Figure 7.16: Factor that deviation of prior state estimate is the deviation of meas-
urement noise versus resulting posterior uncertainty, that is, σx

σv
, where measure-

ment variance σ2
v is 102, for measurement model that measures x directly.

that computes the Kalman Gain,

Kk = P−k H
T
x,k(Hx,kP

−
k H

T
x,k + Crest,k)

−1
,

where Crest,k comes from uncertainty in the measurement prediction, caused
by other sources than the uncertainty in the prior state estimate. If the un-
certainty P−k in the state estimate becomes very large, the term Hx,kP

−
k H

T
x,k

expressing the uncertainty in the measurement prediction caused by the un-
certainty in the state estimate will become the dominant noise source. In
the limit, the Kalman Gain then goes to the product of the term P−k H

T
x,k

and Hx,k times that term. We cancel these terms out, and obtain

Kk = H−1
x,k. (7.4)

Thus, if the uncertainty in the prior state estimate is extremely large, the
Kalman Gain reduces to the inverse of the measurement transfer matrix.

Global Initialization. A robot that does not know its location, simply
drives around until it receives its first measurement. Once this measurement
arrives it initializes its state estimate using the KF correction equation.
However, instead of using the regular Kalman Gain equation to compute
the Kalman Gain, it sets the Kalman Gain to H−1

x,k to incorporate all of the
measurement residual. This gives us for the state estimate

x̂+
k = x̂−k +Kk(zk −Hx,kx̂

−
k )

= x̂−k +H−1
x,k(zk −Hx,kx̂

−
k )

= x̂−k +H−1
x,kzk − x̂

−
k

= H−1
x,kzk.
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Figure 7.17: Global localization when when measurement comes available.

Note that this is not necessarily the true state xk, since measurement noise
may have corrupted the measurement. For the uncertainty in the state
estimate we obtain

P+
k = (I −KkHx,k)P−k

= (I −H−1
x,kHx,k)P−k

= 0.

The posterior uncertainty becomes zero, due to the fact that we ignored
the measurement noise. We know that there is uncertainty in the meas-
urements, and should thus initialize the new initial state estimate with this
uncertainty. Figure 7.16 confirms that as the prior uncertainty becomes
many times larger than the measurement noise, that then the posterior un-
certainty approaches the uncertainty in the measurement noise. Therefore,
we convert the uncertainty in the measurement noise to state space,

P+
k = H−1

x,kCrest,k(H
−1
x,k)

T
, (7.5)

This expression assigns the uncertainty in the measurement prediction due
to measurement noise, and possibly other sources except the prior state
uncertainty, to posterior uncertainty by converting it from measurement
space to state space with the inverse of the measurement transfer matrix.

It is important to note that in order to used the derived equations, we
need to be able to calculate the left inverse of the measurement matrix. If
the dimension of the state is larger than the dimension of the measurement,
then this inverse may not exist.
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Illustration. As an illustration, Figure 7.17(a) shows the true and estim-
ated trajectory of a robot that has no initial idea about its position. The
KF is initialized at an arbitrary position and orientation. In the figure we
see that the robot is driving in a completely different direction during the
first 10 steps. At the 10th step, the robot makes a measurement. It incor-
porates it using the described technique. As we can see, the state estimate
completely moves to the location indicated by the measurement.

Figure 7.17(b) shows the estimation errors and the 95% confidence inter-
vals for the three state variables beginning at step 10, when the measurement
arrived. Notice that after incorporation of the measurement, the estimated
uncertainty does not reduce to zero.

7.6 Related Work

In this chapter we have looked at how we can use the Kalman Filter theory
in the localization problem. We are not the first ones to do this. Over the
years, many researchers have successfully applied the Kalman Filter to the
localization problem resulting in a significant amount of scientific articles.
For examples of these we refer to [2, 24, 38, 48].

7.7 Summary

With the theory of the previous chapters we can approach the localization
problem using KFs. We can use KFs to do position tracking, global localiz-
ation, and solve the kidnapped robot problem.

Using a driving system alone, the KF can perform predictive position
tracking. The estimated trajectory is the noise-free trajectory given by the
system function, and the uncertainty in the state estimates grows without
bounds. Choosing the levels of system noise should be done with care, in
order to obtain useful state estimates. If the system model is significantly
nonlinear, the state estimates can have estimation errors outside the confid-
ence intervals. This can easily happen with large noise in the orientation of
the location.

Using a full state sensor we can correct the predictions that the predict-
ive position tracking makes to obtain state estimates that are significantly
more accurate, together with bounded uncertainty in the state estimates.
Depending on the level of prior and measurement noise uncertainty, the Kal-
man Gain determines what amount of measurement residual to include in
the state estimate. It does this independent of the actual measurement and
measurement prediction. With fixed system and measurement noise, and
frequent measurements, the uncertainty in the state estimates converges.
With infrequent measurements, the uncertainty increases until a measure-
ment arrives, resulting in a large uncertainty decrease.
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If the robot has low uncertainty about its location and all of a sudden is
kidnapped to a new location, the measurement residuals will be high. We
can use a validation gate to monitor when the measurement residuals are
unexpectedly high. Once the robot has detected this, it may try to globally
re-localize itself.

In order to globally localize the robot if it does not know where it is,
we can initialize the KF with the information from the first measurement
that arrives. We can derive equations that use the left inverse of the meas-
urement matrix to determine the state estimate and uncertainty given the
measurement.





Chapter 8

Landmark Kalman
Localization

In Chapter 7 we discussed how to apply KF techniques to the localization
problem. In that chapter we assumed a full state sensor that directly meas-
ures the location of the robot in global coordinates. In this chapter we
continue exploring the application of KFs to the localization problem when
we discuss how to use KFs when we have sensors that measure the location
of landmarks in the environment of the robot.

In Section 8.1 we look at two different cases of localization using land-
marks. In Section 8.2 we discuss the case when we can uniquely identify the
landmarks to which a measurement is made. In Section 8.3 we discuss the
case when we can only determine the type of landmark to which a meas-
urement is made. Along the way we extend the understanding of KFs by
looking more precisely at how linearization errors occur, and by extending
the standard KF framework in order to deal with multiple state beliefs.

8.1 Landmarks and Localization

When we want to use landmarks for localization, we generally have a map
with the location of landmarks in global coordinates, whereas the measure-
ments are locations to landmarks in coordinates from the robot’s point of
view. In order to use the information on the map and the measurement,
there needs to be a relation between the two. The correspondence between
the map and the measurement has to be established.

In some cases, raw sensor data provide direct information about the
landmark on the map to which the measurement is made, for example en-
coded in bar codes. However, in general, raw sensor data do not contain
the relationship between the measured data and mapped landmark. The
robot has to establish this connection itself. For this purpose, it needs to
have some correspondence model, that given raw sensor data determines the
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landmark on the map to which the measurement corresponds. This sensor
data will in general contain more than just the x, y and orientation of the
landmark from the robot’s point of view, like for example the color.

To simplify things, we can assume that the correspondence model can
uniquely determine to which landmark a measurement corresponds. There
is a one-to-one mapping between measurement and landmark, and this map-
ping is correct. There is one reference point to which the measurement is
made. In that case, we can use the measurement model from Chapter 6 in
order to correct state estimates. We will do this in Section 8.2.

The assumption of unique landmark identification may in practice not
always hold. In many cases establishing the correspondence is not a trivial
task. A correspondence model may be able to distinct between different
groups of landmarks, but not between landmarks of the same group. Also, it
might sometimes be able to indicate with some probability that a landmark
is part of a certain group of landmarks, and with some other probability
that it is part of another group. Thus, the correspondence model will not
return one landmark to which the measurement corresponds, but a series
of landmarks together with correspondence probabilities. We can create a
framework around the KF that manages this situation by keeping the history
of encountered landmarks into account when determining the state of the
robot. In Section 8.3 we discuss how to do this.

8.2 Unique Landmark Localization

Assume that we have a sensor that measures the relative location to land-
marks, and that we have a map with the locations of the landmarks with
some uncertainty in the global coordinate space. We also assume that the
correspondence model uniquely determines the landmark to which a meas-
urement was made.

8.2.1 KF Modeling

In Section 6.3.1 we derived the measurement model that given the robot’s
and landmark’s location in some general coordinate system calculates the
coordinates of the landmark from the robot’s point of view. In order to use
this model in correcting state estimates, we instantiate EKF correction equa-
tions. Recall that in this case a measurement is the location of a landmark
from the robot’s point of view, and that the measurement model predicts
this measurement given the location of the robot and a landmark in global
coordinates.

Correction Equations. Since besides the location of the robot xk and
the measurement noise vk, the location of a landmark lk is also input to the
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measurement model, we use the EKF equations

x̂+
k = x̂−k +Kk(zk − h(x̂−k , l̂k))

P+
k = (I −KkHx,k)P−k ,

where

Kk = P−k H
T
x,k(Hx,kP

−
k H

T
x,k +Hl,kLkH

T
l,k +Rk)

−1
,

where l̂k is the best estimate of the location of the landmark with covariance
Lk, and where Hx,k and Hl,k are the Jacobians with the partial derivatives
of the measurement function h(·, ·) with respect to the robot’s location x
and the landmark’s location l respectively,

Hx,k =


∂hx
∂x[x]

∂hx
∂x[y]

∂hx
∂x[φ]

∂hy
∂x[x]

∂hy
∂x[y]

∂hy
∂x[φ]

∂hφ
∂x[x]

∂hφ
∂x[y]

∂hφ
∂x[φ]


x=x̂−k ,l=l̂k

=


− cos(x[φ]) − sin(x[φ])

−(l[x] − x[x]) sin(x[φ])
+(l[y] − x[y]) cos(x[φ])

sin(x[φ]) − cos(x[φ])
(x[x] − l[x]) cos(x[φ])
−(l[y] − x[y]) sin(x[φ])

0 0 −1


x=x̂−k ,l=l̂k

,

(8.1)

and

Hl,k =


∂hx
∂l[x]

∂hx
∂l[y]

∂hx
∂l[φ]

∂hy
∂l[x]

∂hy
∂l[y]

∂hy
∂l[φ]

∂hφ
∂l[x]

∂hφ
∂l[y]

∂hφ
∂l[φ]


x=x̂−k ,l=l̂k

=

 cos(x[φ]) sin(x[φ]) 0
− sin(x[φ]) cos(x[φ]) 0

0 0 1


x=x̂−k ,l=l̂k

. (8.2)

8.2.2 Correcting with Landmark Measurements

With the instantiated EKF equations we can estimate the location of the
robot when it is placed in an environment with identifiable landmarks. We
supply the robot with a list of landmarks containing the location of the land-
marks in global coordinates together with an indication of the uncertainty
in these locations. The EKF is initialized with the true initial position and
some uncertainty.
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(b) Predicted (dotted, blue) and cor-
rected (dotted, red) estimation error
and predicted (solid, blue) and correc-
ted (solid, red) estimated 95% confid-
ence intervals for x, y, and orientation.

Figure 8.1: Detecting identifiably landmarks.

Figure 8.1 shows the resulting trajectories after the robot has observed
three landmarks. In Figure 8.1(a) we have plotted the true and estimated
trajectory of the robot. While the robot is sensing the landmarks, the state
estimates seem to be close to the true trajectory. Figure 8.1(b) confirms
this, in which we plotted the estimation error and 95% confidence intervals.
We clearly recognize the three phases in which the robot senses a landmark.
We see that the uncertainty increases when there is no observable landmark
and quickly decreases when there is a landmark.

8.2.3 EKF Linearization Errors

The landmark sensor that we use is governed by a nonlinear measurement
model. The nonlinearity can cause linearization errors in the estimation.
Increasing the x and y coordinates of the initial state estimate results in
similar estimation results as in Figure 8.1, since the nonlinearities in the
measurement model are caused by the orientation of the robot. When we
adjust the orientation of the initial state estimate such that it is not close to
the true orientation, the EKF suffers from significant estimation problems.

To illustrate this, consider Figure 8.2. The figure shows the true and es-
timated trajectory of the EKF when the initial orientation estimate is large,
whereas the true initial orientation is zero. When the first measurement
arrives, the first correction brings the state estimate far from the true state
at that time. It takes a number of corrections before the state estimate gets
in the neighborhood of the true state.
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Figure 8.2: Robot starts at S. Initial orientation estimate is larger than true
orientation, resulting in corrected state estimate far from true location. True
(dotted, blue), predicted (solid, blue) and corrected (solid, red) trajectories, with
true (blue x) and predicted (red o) measurements. Numbers indicate step num-
bers at which robot makes measurements.

To understand how these linearization errors occur, we look at an arbit-
rary EKF correction step. Consider a correction step of the EKF in which
we include all of the measurement residual. Thus, we let K = H−1

x,k. We can
then rewrite the correction that the EKF performs as

x̂+
k = x̂−k +Kk(zk − h(x̂−k )) (8.3)

= x̂−k +H−1
x,k(zk − ẑk)

= x̂−k +H−1
x,kzk −H

−1
x,kẑk (8.4)

≈ x̂−k + xz,k − x̂−k . (8.5)
= x̂−k + ∆xk,

where xz,k is the state from which the true measurement was made, and
where ∆xk is the state residual, that is, the difference between the state
from which the measurement was made and the prior state estimate. Thus,
instead of considering the correction step of the EKF as including measure-
ment residual into the state estimate, we can consider it as including state
residual into the state estimate.

Seen from this perspective, the EKF correction determines what the
state was that caused the true measurement, then computes the difference
between this state and the estimated state, and then incorporates this state
residual. The state residual may be incorporated partly depending on the
uncertainty in the prior estimate and measurements.



124 Landmark Kalman Localization

−5 0 5 10
−3000

−2000

−1000

0

1000

2000

3000

4000

x
[φ],k

z
[y],k

 

z
[y]

 

x
[φ]

 

(a) Nonlinear measurement relation
between robot’s orientation and meas-
ured y coordinate. At true orientation
x[φ],k, the robot measures z[y],k.
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(c) Linearized measurement function
at latest state estimate x̂[φ],k (red)
indicating one state from which true
measurement z[y],k was made: x̂z,[φ],k.
Notice that this is not the true state
from which the measurement was
made, x[φ],k.
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(d) With a different true state, x′[φ],k,
giving the same true measurement
z[y],k, the linearization error is smaller,
altough the estimation error is higher.

Figure 8.3: Linearization error in EKF.
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To visualize how linearization errors occur from this perspective, con-
sider Figure 8.3(a), which shows the measurement function component that
relates the orientation x[φ] of the robot to the measured y coordinate z[y]

of a landmark. At a time step k, the robot is in true state xk with true
orientation x[φ],k, resulting in a true y measurement z[y],k. Ideally the EKF
would find this true state xk from which the measurement was made and
use that state to adjust its state estimate.

Keeping uncertainty in measurement and landmark out of consideration,
Figure 8.3(b) shows what the inverse of the measurement function would give
for the state from which the measurement was made. In fact, we see that
given the true measurement, there are multiple possibilities for these states.

The EKF does not have access to the inverse of the measurement func-
tion. Instead, it assumes that it can linearize the measurement function
around the current state estimate. Figure 8.3(c) shows how this results in
an estimate x̂z,[φ],k of the orientation of the state from which the measure-
ment was made. Clearly there is a large difference between the true x[φ],k

and the estimated x̂z,[φ],k from which the measurement was made; there is
a large linearization error.

Notice that if the prior estimation error is low, that then the linearization
error is more likely to be low than when the prior estimation error is high.
The nonlinear function is then linearized more adequately. However, the
linearization error may be low again or even reduce to zero, when the prior
estimation error is high, as we can see in Figure 8.3(d).

Notice also that the figures only show the values of z[y] at different values
of x[φ]. The state residual in these figures indicates what amount the orient-
ation of the state estimate has to change in order to get in the neighborhood
of the state from which the measurement was made. The state residuals in
the figures will however not be included completely in the state estimate,
due to the dependence of other measurement variables on the orientation of
the robot, and due to weighting of the uncertainty in the prior estimate and
measurement.

8.2.4 IEKF Linearization Errors

A way to reduce linearization errors may be by using the Iterated EKF
instead of the EKF. To illustrate that this can be beneficial, Figure 8.4
shows another state estimation run using the landmark sensor model. The
robot had to globally localize itself. In Figure 8.4(a) the EKF estimated
the states. We see that the state estimates are far from the true locations,
which are pointed out by the arrow. Figure 8.4(b) shows the same run, only
now the states are estimated by the IEKF. Clearly, the state estimates of
the IEKF are significantly closer to the true states than those of the EKF.

As we know from Chapter 5, the IEKF reduces the linearization error
by re-linearizing the measurement function once it has corrected its prior
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Figure 8.4: State estimation with EKF and IEKF. True (dotted, blue), predicted
(solid, blue) and corrected (solid, red) state trajectories, with measurements to
the three landmarks. Arrow indicates region with landmarks.

state estimate. The IEKF tries to find the best estimate of the state that
resulted in the measurement. Whereas the EKF assumes that it can find
the state that produced the measurement with one linearization around the
prior state estimate, the IEKF repeatedly adjusts this state estimate to see
if it can find a better state.

To illustrate this, consider Figure 8.5, which shows how re-linearization
of the IEKF results in a lower linearization error. The sub-figures show how
the orientation of the state of the robot is related to the y coordinate of the
measurements at a certain time. Figure 8.5(a) shows how the first linear-
ization results in a relatively large linearization error. Figure 8.5(b) shows
that by re-linearizing the measurement function at the measurement state
found in the first linearization, the linearization error reduces significantly.
The IEKF uses the in this way estimated state from which the measurement
was made to determine the state residual.

In the illustration, the measurement function is close to linear over the
trajectory from the state found after one linearization and the true state.
In the EKF example of Figure 8.3 the measurement function is not close to
linear over the trajectory from the first found state and the true state. Figure
8.5(c) shows how the IEKF would re-linearize the found measurement state
from the EKF. We see that the linearization error in fact becomes larger
due to the re-linearization.

The reason that the IEKF does achieve good results lies in the fact
that the orientation of the state estimate is not only adjusted based on the
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(a) First linearization step.
Nonlinear measurement function
(blue) is linearized at estimated
state x̂[φ],k, resulting in state
x̂z,[φ],k as state from where meas-
urement was made. Linearization
error is large.
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(c) Since measurement function is
not close to linear between first
found state x̂z,[φ],k and true state
x[φ],k, the re-linearization (solid,
red) does not reduce the lineariza-
tion error.

Figure 8.5: Linearization error reduction in IEKF.
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Figure 8.6: IEKF state estimate adjustment.

measured y coordinate, but also based on the measured x coordinate and
the measured orientation. It is constrained by all three measured variables.
This has as result that the IEKF does find a state close to the true state
from which a measurement was made. Figure 8.6 shows one step of the
IEKF in which the IEKF clearly adjusts the intermediate state estimates to
find the state from which the measurement was made.

8.3 Type Based Landmark Localization

In this section we assume that we again have a sensor that measures the
location of landmarks from the robot’s point of view. However, the robot
is now unable to uniquely identify the landmark to which the measurement
was made. Instead, we assume it is able to identify the type of landmark
and that its map contains the global locations of the different landmarks
labeled with the type and some unique identification.

If the landmark detection sensor cannot uniquely determine to which
landmark it makes an observation we have to create some extra adminis-
tration around the standard KF equations that deals with this. The idea
is that by assuming the different landmarks to be the true landmark of the
measurement, the robot can maintain different location beliefs. By keeping
track of the probabilities of observing measurements while being at a cer-
tain location, we are able to separate location beliefs that are more likely
to represent the true location. We keep track of the probabilities of se-
quences of measurements occurring. Similar work, though less detailed and
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general, has been done by Roumeliotis, who named this approach Multiple
Hypothesis Tracking [34].

8.3.1 KF Modeling

Incorporating Acting. Assume that at step k we have n state beliefs.
Let us denote the set of state estimate-uncertainty pairs as Sk. Assume
that each element Sjk has a probability of representing the true state. If the
robot performed an action ak−1, then we include the relative displacement
information resulting from this action in each of the state estimates using
the KF prediction equations. This results in n prior state beliefs.

We can combine the different prior state beliefs into one combined belief
Bel−(xk) as the sum of the different state beliefs, weighted by the probabilit-
ies that they represent the true state. Using the theorem of total probability,
we obtain

Bel−(xk) =
n∑
i=1

Bel−(xk|Sik) · P (Sik|z1, a1, . . . , zk−1, ak−1) (8.6)

The first term on the right hand side of equation (8.6) is one of the n prior
state beliefs as computed by the KF prediction step. The second term in
the same expression is the probability of this state belief representing the
true state. We rewrite this term using Bayes’ rule as

P (Sik|z1, a1, . . . , zk−1, ak−1)

=
P (ak−1|z1, a1, . . . , zk−1, S

i
k)

P (ak−1|z1, a1, . . . , zk−1)
· P (Sik|z1, a1, . . . , zk−1).

Assuming that the probability of the action at step k − 1 is independent of
the probability of Sik representing the true state at step k, the first term on
the right hand side of this expression becomes 1. Thus, the probability of
Sik after action ak−1 is the same as the probability of Sik before the action.
With this, the combined prior belief becomes

Bel−(xk) =
n∑
i=1

Bel−(xk|Sik) · P (Sik|z1, a1, . . . , zk−1). (8.7)

Incorporating Sensing. When a measurement arrives, the correspond-
ence model provides m corresponding landmarks with a correspondence
probability. Let us denote Lk as the set of corresponding landmarks, and
let Ljk be an element of this set, consisting of the location and uncertainty
of the jth corresponding landmark.

Since every corresponding landmark can be the landmark to which the
measurement was made, we consider every combination of prior state belief
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and landmark. Thus, for every landmark Ljk, and every prior state belief
Sik, we compute

Bel+(xk|Sik, zk=̂L
j
k), (8.8)

using the KF correction step from the last section. This results in nm
posterior state estimates.

We can combine the beliefs in these different state beliefs into one com-
bined posterior belief Bel+(xk), which combines the state beliefs weighted
by their probabilities of representing the true state,

Bel+(xk)

=
m∑
j=1

n∑
i=1

Bel+(xk|Sik, zk=̂L
j
k) · P (Sik, zk=̂L

j
k|z1, a1, . . . , zk−1, ak−1).

(8.9)

The first term in this expression is one of the posterior state beliefs as
computed by the KF correction step, assuming a particular prior state belief
Sik and a particular corresponding landmark Ljk. The second term in the
expression is the probability of observing this landmark, while having this
state belief. We can rewrite this term into

P (Sik, zk=̂L
j
k|z1, a1, . . . , zk−1, ak−1)

= P (Sik|z1, a1, . . . , zk−1, ak−1, zk=̂L
j
k) · P (zk=̂L

j
k). (8.10)

In this expression, the second term on the right hand side is the prior prob-
ability that a measurement corresponds to a landmark; this probability is
given by the correspondence model. The first term on the right hand side
represents the probability of Sik representing the state belief, taking into
account all the measurements and relative displacement, and assuming that
the latest measurement corresponds to landmark Ljk. Using Bayes’ rule and
the Markov assumption we rewrite this term into

P (Sik|z1, a1, . . . , zk−1, ak−1, zk=̂L
j
k)

=
P (zk=̂L

j
k|z1, a1, . . . , zk−1, ak−1, S

i
k)

P (zk=̂L
j
k|z1, a1, . . . , zk−1, ak−1)

· P (Sik|z1, a1, . . . , zk−1, ak−1)

= µ · P (zk=̂L
j
k|S

i
k) · P (Sik|z1, a1, . . . , zk−1, ak−1), (8.11)

where the last term is the prior probability of Sik; the second term is the
probability that the measurement corresponds to landmark Ljk given that Sik
represents the state belief, which we compute using the measurement model;
µ is a normalizing factor, ensuring that the probabilities of a measurement
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Figure 8.7: Environment and estimated trajectories.

corresponding to a landmark given a particular state belief sum to 1. This
factor is computed as

µ =

 n∑
j=1

P (zk=̂L
j
k|S

i
k) · P (Sik|z1, a1, . . . , zk−1, ak−1)

−1

. (8.12)

8.3.2 Correcting Locations

With the described framework we can now make the robot drive around
in an environment where it can only identify the type of landmarks. For
simplicity, assume that the robot drives in an environment with one type
of landmark, and that the robot is not influenced by system noise. It has a
map with the locations of these landmarks, together with some uncertainty.

In Figure 8.7(a) we have plotted the environment of the robot together
with the true trajectory. The robot starts at S, but it is initialized with uni-
form belief. While passing the landmarks, the robot receives measurements
which it uses to estimate its position. Figure 8.7(b) shows the resulting es-
timated state trajectories that the robot keeps for possible while navigating.
The longer the state trajectory, the longer the robot keeps it into account as
possible true state trajectory. Let us go into more detail on how the robot
achieved this result.

The first measurement that the robot receives is to landmark 1. However,
the robot does not know this; all it knows is that it is near one of the
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Figure 8.8: Location estimation with type identifiable landmarks.
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5 landmarks. Therefore, using the global localization technique from the
previous chapter, it creates 5 posterior state estimates, each conditioned on
a different landmark. Figure 8.8(a) shows the combined posterior belief at
that time.

After some driving, the robot receives a measurement to the next meas-
urement. Again, the robot does not know this, and thus it incorporates
each possible landmark into each of the 5 state estimates, resulting in 25
state estimates. Thresholding on the probability of each of the state beliefs
being the true state estimate, we are left with 3 state estimates. These state
estimates are depicted in Figure 8.8(b) and correspond to the scenarios in
which the first landmark encountered was 1, followed by 2, or where the first
was 2, followed by 3, or where the first was 4, followed by 5. The scenarios
in which the robot first encounters 3 and then 4, 1 and then 4, etc. are too
unlikely to proceed.

After some more driving the robot encounters the third landmark, land-
mark 3. The robot incorporates each of the 5 possible landmarks into the 3
state beliefs, resulting in 15 posterior state beliefs. Thresholding the prob-
abilities of the state beliefs leaves one possible state belief, as shown in
Figure 8.8(c). This estimate corresponds to the case in which the robot
first encountered landmark 1, then 2, and then 3. The robot has uniquely
determined its position.

8.3.3 Issues

When implementing the framework some issues have to be taken into ac-
count.

Threshold Selection. The number of state estimates grows with every
measurement where there is more than one corresponding landmark. To
keep the computational costs low, state beliefs that are almost the same can
be combined, and state beliefs that have high uncertainty can be removed.

Co-existing State Beliefs. In our example the robot encountered enough
landmarks to uniquely determine which of the state estimates kept as pos-
sible corresponded to the true state estimate. The environment provided
enough information. However, if there is not enough information, multiple
state beliefs can keep existing. If in our example the robot would not have
encountered any other landmarks besides the first, then 5 state estimates
would have co-existed.

No State Beliefs. On the other hand, depending on the method used for
thresholding, it may happen that all state beliefs become so unlikely that
none of them is seen as possible true state belief. In that case, the robot
may choose to forget its state beliefs and begin again.
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8.4 Summary

We can use KFs to perform localization when we have access to measure-
ments that measure the location of landmarks from the robot’s point of view.
We hereby make a distinction between the situation in which the robot can
uniquely identify the landmark to which a measurement is made, and the
situation in which it can only determine a group of landmarks to which the
measurement is made.

Using the landmark sensor model from Chapter 6 we can instantiate
EKF correction equations. With these equations we can correct the location
estimate when landmarks are in sight. However, if we use the EKF, then this
only works well if the linearization errors are negligible; if the uncertainty
in the orientation is relatively high, then this may not be the case, resulting
in serious estimation errors.

By considering the correction step of KFs as including some amount of
state residual into the prior state estimate, we can explain in more detail
what linearization errors are and in particular how the Iterated EKF suc-
cessfully reduces them by iteratively trying to find the state from which the
true measurement was made.

If the robot can not uniquely determine to which landmark a meas-
urement corresponds, then we can create a framework around the KF that
allows multiple state beliefs. By keeping track of the probability of observing
sequences of measurements, while being at certain states, we can determ-
ine which state beliefs are more likely to represent the true state. In order
to keep this framework computationally efficient, the number of considered
state beliefs should be kept low, while preventing the robot from loosing all
its belief.



Chapter 9

Conclusion

In this work we have thoroughly discussed the problem of Robot Local-
ization, the problem of state estimation of noisy dynamic systems using
Kalman Filters, and finally how to apply Kalman Filter techniques to solve
the Robot Localization problem. In order of appearance we discussed the
following topics.

Robot Localization.

• From a practical point of view we discussed the need for a robot to
localize itself while navigating through an environment. We identified
three different localization instantiations, position tracking, global loc-
alization, and the kidnapped robot problem. In order to determine what
information a robot has access to regarding its position, we discussed
different sources of information and pointed out advantages and dis-
advantages. We concluded that due to the imperfections in actuators
and sensors due to noise sources, a navigating robot should localize
itself using information from different sensors.

• In order to formalize this, we considered the localization problem in
probabilistic context as a Bayesian estimation problem. We defined the
belief of the robot as the probability density over the space of possible
locations, conditioned on types of location information it has access
to. With understanding and application of Bayes’ rule and the Markov
assumption, we obtained a localization formula that formalizes the
incorporation of relative and absolute position measurements into this
belief. We found that in order to implement the localization formula
we need a concrete representation of the location space, along with
models that describe the influence of actions on the location, and that
describe the relation between measurements and locations. Discussing
several methods that implement the formula, we found different ways
of implementing these.
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Kalman Filters.

• We thoroughly discussed the basics of the Kalman Filter. We looked at
the assumptions that the Kalman Filter poses on the system of which
it estimates the state: a linear dynamic system with linearly related
measurements, corrupted by Gaussian distributed, white, zero-mean
noise. We looked at the implications of these assumptions, which led
us to the equations that form the Linear Kalman Filter. We created
better understanding of the Kalman Filter by describing the meaning
of the different equations. We proved that under the posed assump-
tions the LKF optimally estimates the state of a system in minimum
error variance sense, and we generalized the derived equations to allow
for systems with multiple input parameters.

• Since the Linear KF only works for systems that can be described with
linear system and measurement models, we discussed how we can use
linearization techniques to obtain KF extensions that estimate the
state of nonlinear problems. If we more or less now the state traject-
ory of the system we can use the Perturbation KF to estimate the
state, if the perturbation around the trajectory will stay small. The
disadvantage of this approach is that the estimation error can increase
when the true state follows a significantly different trajectory than as
modeled. The PKF does not take state estimates into account when
linearizing. We argued that the Extended Kalman Filter improves
this by incorporating the latest state estimates into the linearization
process. In line with this, the Iterated Extended Kalman Filter re-
peatedly linearizes a corrected state estimate to find the best state
estimate used for inclusion of a measurement. We showed how we can
extend the formulation of the EKF to systems and measurements with
any number of parameters, as long as the uncertainties in them are
independent of each other. We furthermore pointed out the key ideas
of alternative extensions, which do not require Jacobian matrices to
be calculated and allow for other than Gaussian distributions. These
extensions may further improve the estimation performance.

Kalman Localization.

• In order to show how we can use Kalman Filters in the Robot Localiz-
ation context we derived models for acting and sensing and discussed
the true behavior of these systems in the light of noise. Among oth-
ers, we concluded that the Gaussian noise assumption is not always
valid, and that uncertainty in the orientation of the robot causes the
uncertainty in the location to increase.

• We used the models in showing how to use the EKF for each of the
three posed localization problem instances. First, we discussed pre-
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dictive position tracking, and predictive position tracking with cor-
rections. While doing this, we pointed out several KF aspects, illus-
trated with charts. It is important to have accurate levels of system
and measurement noise, such that measurements are incorporated to
the right extent. Having access to fewer measurements increases the
uncertainty in state estimates, which may lead to inconsistent state
estimates. Second, we looked at the kidnapped robot problem, and
found that we can use validation gates to detect a kidnap. Third, we
discussed how we can use the EKF with full state sensor to perform
global localization. We looked at possibilities to represent ignorance
about the location, and showed the use of forced full measurement
usage.

• We discussed the use of landmarks in localization with Kalman Fil-
ters. We used the model of a landmark detecting sensor that perfectly
identifies landmarks to illustrate the errors that can occur due to non-
linearities in the models. We showed how the EKF fails when the
nonlinearities are too large due to linearization errors, and how the It-
erated EKF deals with this. We extended the KF framework in order
to be able to deal with measurements that can correspond to different
reference points, and showed this framework in action.

With the presented work we have given an in-depth theoretical discussion
of the use of Kalman Filters in the Robot Localization problem. We have
pointed out advantages and disadvantages of the different techniques, while
keeping in mind a practical perspective. We have discussed the use of Kal-
man Filter based techniques for all posed Robot Localization problem in-
stances, illustrated with experiments.

9.1 Future Work

This work can be used as theoretical basis for further studies in a number
of different directions. First, in the localization chapters we discussed some
localization methods implementing the localization formula. They give a
starting point for further readings into the different localization methods.
Second, also the KF chapters form a basis for further studies. With the
basic derivations of the KF and some of the extensions, it is interesting to
look more detailed into other extensions relaxing more assumptions. Third,
the experiments we performed in the chapters on KFs and localization were
performed in a simulator and merely meant as illustrations to concepts of
the KF. In order to draw conclusions on the practical utility of the KF, the
theory discussed in these chapters can be applied in practice.

Throughout the progress of this work, interesting ideas for future work
came up. One of these is to look for ways to make the KF applicable in
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dynamic environments, since the real world is not static. In this work we
discussed the use of KFs and localization of a robot using static landmarks of
which it knows the location with some uncertainty. It is interesting to look
at what would happen if the landmarks are not static, but move through the
environment according to some motion model. Using validation gates the
robot could perhaps learn this model. Multiple robots may together learn
a rough motion model of the moving objects and share their information
regarding their own and the landmark’s location.
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Appendix A

Simulator

In order to experiment with different KFs, we implemented a simulator that
provides us with the necessary functionality to analyze KFs using different
system and measurement settings. The simulator consists of a set of Mat-
lab functions that implement a truth model, a Kalman Filter model, and
visualization tools. The truth model simulates the real system and sensor
systems; the KF model consists of the KF instantiation used for estimating
the state of the modeled real system and sensors; the visualization tools
provide functionality to display various kinds of plots and animations in a
consistent way.

With the current implementation, the simulator contains truth and Kal-
man Filter model implementations for the drive and sensor systems de-
scribed in this work. Moreover, the simulator supports analyses using the
Linear KF, Extended KF, Iterated EKF, and KF with multiple state be-
liefs. The simulator allows any number of state influencers, using any state
sensors, that again can have any number of parameters. Although in the
current implementation the system and noise noise sources are all Gaussian
distributed, the code could easily be adjusted to experiment with different
kinds of noise.

The simulator can generate true state and measurement trajectories in-
dependent of KF analysis. Once the data has been generated, the user can
experiment with the different KF implemententations on the same true data
to investigate the effects of different models or noise settings. Besides this,
the user can also regenerate true measurement trajectories, without regener-
ating state trajectories. This comes in useful when analyzing measurement
noise influences.

The code including comments on use and adjustment can be found at
http://www.negenborn.net/kal loc/.

http://www.negenborn.net/kal_loc/
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